» Articles » PMID: 19865587

Nanoparticle Formulation Increases Oral Bioavailability of Poorly Soluble Drugs: Approaches Experimental Evidences and Theory

Overview
Journal Curr Nanosci
Specialty Biotechnology
Date 2011 Sep 30
PMID 19865587
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

The increasing frequency at which poorly soluble new chemical entities are being discovered raises concerns in the pharmaceutical industry about drugability associated with erratic dissolution and low bioavailability of these hydrophobic compounds. Nanonization provides a plausible pharmaceutical basis for enhancing oral bioavailability and therapeutic effectiveness of these compounds by increasing their surface area. This paper surveys methods available to pharmaceutical manufacturing nanoparticles, including wet chemical processes, media milling, high pressure homogenization, gas-phase synthesis, and form-in-place processes, and elaborates physicochemical rational and gastrointestinal physiological basis upon which nano-drugs can be readily absorbed. Relevant examples are illustrated to show that nano-drugs permeate Caco-2 cell monolayer fast and are well absorbed into animal systemic circulation with high T(max) and AUC, resulting in oral bioavailability higher than their counterpart micro-drugs. The size-dependent permeability and bioavailability should be given particular consideration in the development of potent and selective drug candidates with poor aqueous solubility.

Citing Articles

Oral Administration of Neratinib Maleate-Loaded Lipid-Polymer Hybrid Nanoparticles: Optimization, Physical Characterization, and In Vivo Evaluation.

Mahajan R, Ravi P, Jadhav S, Pansuriya P, Naik B, Anture S Pharmaceutics. 2025; 17(2).

PMID: 40006588 PMC: 11858839. DOI: 10.3390/pharmaceutics17020221.


Cancer immunotherapy and its facilitation by nanomedicine.

Sui C, Wu H, Li X, Wang Y, Wei J, Yu J Biomark Res. 2024; 12(1):77.

PMID: 39097732 PMC: 11297660. DOI: 10.1186/s40364-024-00625-6.


Recent Advances in Management of Neuropathic, Nociceptive, and Chronic Pain: A Narrative Review with Focus on Nanomedicine, Gene Therapy, Stem Cell Therapy, and Newer Therapeutic Options.

Kataria S, Patel U, Yabut K, Patel J, Patel R, Patel S Curr Pain Headache Rep. 2024; 28(5):321-333.

PMID: 38386244 PMC: 11126447. DOI: 10.1007/s11916-024-01227-5.


Anticancer Activity of Astaxanthin-Incorporated Chitosan Nanoparticles.

Hwang E, Jeong Y, Lee K, Yu Y, Ohk S, Lee S Molecules. 2024; 29(2).

PMID: 38276606 PMC: 10818874. DOI: 10.3390/molecules29020529.


Comprehensive Analysis of Titanium Oxide Nanoparticle Size and Surface Properties on Neuronal PC-12 Cells: Unraveling Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition.

Suthar J, Rakesh B, Vaidya A, Ravindran S J Xenobiot. 2023; 13(4):662-684.

PMID: 37987444 PMC: 10660528. DOI: 10.3390/jox13040043.


References
1.
Williams K, Veenhuizen P, de la Torre B, Eritja R, Dekker C . Nanotechnology: carbon nanotubes with DNA recognition. Nature. 2002; 420(6917):761. DOI: 10.1038/420761a. View

2.
Lamprecht A, Schafer U, Lehr C . Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001; 18(6):788-93. DOI: 10.1023/a:1011032328064. View

3.
Hussain N, Jani P, Florence A . Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm Res. 1997; 14(5):613-8. DOI: 10.1023/a:1012153011884. View

4.
Hussain N, Florence A . Utilizing bacterial mechanisms of epithelial cell entry: invasin-induced oral uptake of latex nanoparticles. Pharm Res. 1998; 15(1):153-6. DOI: 10.1023/a:1011981610840. View

5.
Jani P, Halbert G, Langridge J, Florence A . The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol. 1989; 41(12):809-12. DOI: 10.1111/j.2042-7158.1989.tb06377.x. View