» Articles » PMID: 19863661

FabH Selectivity for Anteiso Branched-chain Fatty Acid Precursors in Low-temperature Adaptation in Listeria Monocytogenes

Overview
Specialty Microbiology
Date 2009 Oct 30
PMID 19863661
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Gram-positive bacteria, including Listeria monocytogenes, adjust membrane fluidity by shortening the fatty acid chain length and increasing the proportional production of anteiso fatty acids at lower growth temperatures. The first condensation reaction in fatty acid biosynthesis is carried out by beta-ketoacyl-acyl carrier protein synthase III (FabH), which determines the type of fatty acid produced in bacteria. Here, we measured the initial rates of FabH-catalyzed condensation of malonyl-acyl carrier protein and alternate branched-chain precursor acyl-CoAs utilizing affinity-purified His-tagged L. monocytogenes FabH heterologously expressed in Escherichia coli. Listeria monocytogenes FabH showed a preference for 2-methylbutyryl-CoA, the precursor of odd-numbered anteiso fatty acids, at 30 degrees C, which was further increased at a low temperature (10 degrees C), suggesting that temperature-dependent substrate selectivity of FabH underlies the increased formation of anteiso branched-chain fatty acids during low-temperature adaptation. The increased FabH preferential condensation of 2-methylbutyryl-CoA could not be attributed to a significantly higher availability of this fatty acid precursor as acyl-CoA pool levels were reduced similarly for all fatty acid precursors at low temperatures.

Citing Articles

A temperature-sensitive metabolic valve and a transcriptional feedback loop drive rapid homeoviscous adaptation in Escherichia coli.

Hoogerland L, van den Berg S, Suo Y, Moriuchi Y, Zoumaro-Djayoon A, Geurken E Nat Commun. 2024; 15(1):9386.

PMID: 39477942 PMC: 11525553. DOI: 10.1038/s41467-024-53677-5.


Bacterial acquisition of host fatty acids has far-reaching implications on virulence.

Waters J, Eijkelkamp B Microbiol Mol Biol Rev. 2024; 88(4):e0012624.

PMID: 39475267 PMC: 11653727. DOI: 10.1128/mmbr.00126-24.


Lipidomics of homeoviscous adaptation to low temperatures in utilizing exogenous straight-chain unsaturated fatty acids.

Barbarek S, Shah R, Paul S, Alvarado G, Appala K, Phillips C J Bacteriol. 2024; 206(7):e0018724.

PMID: 38953643 PMC: 11270863. DOI: 10.1128/jb.00187-24.


An insight into the role of branched-chain α-keto acid dehydrogenase (BKD) complex in branched-chain fatty acid biosynthesis and virulence of .

Chowdhury Q, Islam S, Narayanan L, Ogunleye S, Wang S, Thu D J Bacteriol. 2024; 206(7):e0003324.

PMID: 38899896 PMC: 11270904. DOI: 10.1128/jb.00033-24.


Lipidomics of homeoviscous adaptation to low temperatures in utilizing exogenous straight-chain unsaturated fatty acids over biosynthesized endogenous branched-chain fatty acids.

Barbarek S, Shah R, Paul S, Alvarado G, Appala K, Henderson E bioRxiv. 2024; .

PMID: 38352554 PMC: 10862916. DOI: 10.1101/2024.02.02.578686.


References
1.
Li Y, Florova G, Reynolds K . Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH). J Bacteriol. 2005; 187(11):3795-9. PMC: 1112031. DOI: 10.1128/JB.187.11.3795-3799.2005. View

2.
Zhang Y, Rock C . Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008; 6(3):222-33. DOI: 10.1038/nrmicro1839. View

3.
Kaneda T . Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev. 1991; 55(2):288-302. PMC: 372815. DOI: 10.1128/mr.55.2.288-302.1991. View

4.
Suutari M, Laakso S . Microbial fatty acids and thermal adaptation. Crit Rev Microbiol. 1994; 20(4):285-328. DOI: 10.3109/10408419409113560. View

5.
Roessner U, Wagner C, Kopka J, Trethewey R, Willmitzer L . Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000; 23(1):131-42. DOI: 10.1046/j.1365-313x.2000.00774.x. View