Chowdhury A, Shrestha P, Jois S
Int J Pept Res Ther. 2025; 31(3):38.
PMID: 39974747
PMC: 11832722.
DOI: 10.1007/s10989-025-10690-6.
Grover A, Singh S, Sindhu S, Lath A, Kumar S
Mol Divers. 2025; .
PMID: 39862350
DOI: 10.1007/s11030-025-11113-w.
Lins J, Miloslavina Y, Avrutina O, Theiss F, Hofmann S, Kolmar H
J Am Chem Soc. 2024; 146(51):35175-35184.
PMID: 39662885
PMC: 11673113.
DOI: 10.1021/jacs.4c11589.
Huynh N, Ho T, Pham Y, Dang L, Pham S, Dang T
Protein J. 2024; 43(2):159-170.
PMID: 38485875
DOI: 10.1007/s10930-024-10188-y.
Han X, Zhou T, Hu X, Zhu Y, Shi Z, Chen S
Int J Mol Sci. 2023; 24(24).
PMID: 38139394
PMC: 10743862.
DOI: 10.3390/ijms242417565.
Using the Cyclotide Scaffold for Targeting Biomolecular Interactions in Drug Development.
Jacob B, Vogelaar A, Cadenas E, Camarero J
Molecules. 2022; 27(19).
PMID: 36234971
PMC: 9570680.
DOI: 10.3390/molecules27196430.
Sactipeptide Engineering by Probing the Substrate Tolerance of a Thioether-Bond-Forming Sactisynthase.
Ali A, Happel D, Habermann J, Schoenfeld K, Macarron Palacios A, Bitsch S
Angew Chem Int Ed Engl. 2022; 61(45):e202210883.
PMID: 36049110
PMC: 9828075.
DOI: 10.1002/anie.202210883.
Small molecule peptidomimetic trypsin inhibitors: validation of an EKO binding mode, but with a twist.
Lyu R, Joy S, Packianathan C, Laganowsky A, Burgess K
Org Biomol Chem. 2022; 20(10):2075-2080.
PMID: 35225309
PMC: 10365224.
DOI: 10.1039/d1ob02127c.
Cystine Knot Peptides with Tuneable Activity and Mechanism.
Yi Li C, Rehm F, Yap K, Zdenek C, Harding M, Fry B
Angew Chem Int Ed Engl. 2022; 61(19):e202200951.
PMID: 35224831
PMC: 9539897.
DOI: 10.1002/anie.202200951.
Bivalent antibody pliers inhibit β-tryptase by an allosteric mechanism dependent on the IgG hinge.
Maun H, Vij R, Walters B, Morando A, Jackman J, Wu P
Nat Commun. 2020; 11(1):6435.
PMID: 33353951
PMC: 7755903.
DOI: 10.1038/s41467-020-20143-x.
The Potential of the Cyclotide Scaffold for Drug Development.
Camarero J, Campbell M
Biomedicines. 2019; 7(2).
PMID: 31010257
PMC: 6631875.
DOI: 10.3390/biomedicines7020031.
Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions.
Chaudhuri D, Aboye T, Camarero J
Biochem J. 2019; 476(1):67-83.
PMID: 30635453
PMC: 7080216.
DOI: 10.1042/BCJ20180792.
Potent, Selective, and Cell-Penetrating Inhibitors of Kallikrein-Related Peptidase 4 Based on the Cyclic Peptide MCoTI-II.
Swedberg J, Ghani H, Harris J, de Veer S, Craik D
ACS Med Chem Lett. 2019; 9(12):1258-1262.
PMID: 30613336
PMC: 6295872.
DOI: 10.1021/acsmedchemlett.8b00422.
Discovery of potent inhibitors of human β-tryptase from pre-equilibrated dynamic combinatorial libraries.
Jiang Q, Sicking W, Ehlers M, Schmuck C
Chem Sci. 2017; 6(3):1792-1800.
PMID: 29163876
PMC: 5644118.
DOI: 10.1039/c4sc02943g.
Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications.
Camarero J
Bioorg Med Chem Lett. 2017; 27(23):5089-5099.
PMID: 29110985
PMC: 5812341.
DOI: 10.1016/j.bmcl.2017.10.051.
Cyclotides: Overview and Biotechnological Applications.
Gould A, Camarero J
Chembiochem. 2017; 18(14):1350-1363.
PMID: 28544675
PMC: 5812342.
DOI: 10.1002/cbic.201700153.
Plant cystine-knot peptides: pharmacological perspectives.
Molesini B, Treggiari D, Dalbeni A, Minuz P, Pandolfini T
Br J Clin Pharmacol. 2016; 83(1):63-70.
PMID: 26987851
PMC: 5338163.
DOI: 10.1111/bcp.12932.
Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding.
Jones P, George A
Sci Rep. 2016; 6:23174.
PMID: 26975976
PMC: 4791599.
DOI: 10.1038/srep23174.
High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots.
Kikuchi K, Sugiura M, Kimura T
Int J Pept. 2016; 2015:537508.
PMID: 26843868
PMC: 4710912.
DOI: 10.1155/2015/537508.
Design of a MCoTI-Based Cyclotide with Angiotensin (1-7)-Like Activity.
Aboye T, Meeks C, Majumder S, Shekhtman A, Rodgers K, Camarero J
Molecules. 2016; 21(2):152.
PMID: 26821010
PMC: 4795166.
DOI: 10.3390/molecules21020152.