» Articles » PMID: 19838192

Global Patterns of Cis Variation in Human Cells Revealed by High-density Allelic Expression Analysis

Abstract

Cis-acting variants altering gene expression are a source of phenotypic differences. The cis-acting components of expression variation can be identified through the mapping of differences in allelic expression (AE), which is the measure of relative expression between two allelic transcripts. We generated a map of AE associated SNPs using quantitative measurements of AE on Illumina Human1M BeadChips. In 53 lymphoblastoid cell lines derived from donors of European descent, we identified common cis variants affecting 30% (2935/9751) of the measured RefSeq transcripts at 0.001 permutation significance. The pervasive influence of cis-regulatory variants, which explain 50% of population variation in AE, extend to full-length transcripts and their isoforms as well as to unannotated transcripts. These strong effects facilitate fine mapping of cis-regulatory SNPs, as demonstrated by dissection of heritable control of transcripts in the systemic lupus erythematosus-associated C8orf13-BLK region in chromosome 8. The dense collection of associations will facilitate large-scale isolation of cis-regulatory SNPs.

Citing Articles

Statistical framework for calling allelic imbalance in high-throughput sequencing data.

Buyan A, Meshcheryakov G, Safronov V, Abramov S, Boytsov A, Nozdrin V Nat Commun. 2025; 16(1):1739.

PMID: 39966391 PMC: 11836314. DOI: 10.1038/s41467-024-55513-2.


Identification of candidate causal variants and target genes at 41 breast cancer risk loci through differential allelic expression analysis.

Xavier J, Magno R, Russell R, de Almeida B, Jacinta-Fernandes A, Besouro-Duarte A Sci Rep. 2024; 14(1):22526.

PMID: 39341862 PMC: 11438911. DOI: 10.1038/s41598-024-72163-y.


Simultaneous de novo calling and phasing of genetic variants at chromosome-scale using NanoStrand-seq.

Bai X, Chen Z, Chen K, Wu Z, Wang R, Liu J Cell Discov. 2024; 10(1):74.

PMID: 38977679 PMC: 11231365. DOI: 10.1038/s41421-024-00694-9.


Characterizing genetic variation in the regulation of the ER stress response through computational and cis-eQTL analyses.

Russell N, Jorde L, Chow C G3 (Bethesda). 2023; 13(12).

PMID: 37792690 PMC: 10700025. DOI: 10.1093/g3journal/jkad229.


Allele-specific RNA -methyladenosine modifications reveal functional genetic variants in human tissues.

Cao S, Zhu H, Cui J, Liu S, Li Y, Shi J Genome Res. 2023; 33(8):1369-1380.

PMID: 37714712 PMC: 10547253. DOI: 10.1101/gr.277704.123.


References
1.
Wang H, Fu Y, McPeek M, Lu X, Nuzhdin S, Xu A . Complex genetic interactions underlying expression differences between Drosophila races: analysis of chromosome substitutions. Proc Natl Acad Sci U S A. 2008; 105(17):6362-7. PMC: 2359775. DOI: 10.1073/pnas.0711774105. View

2.
Campino S, Forton J, Raj S, Mohr B, Auburn S, Fry A . Validating discovered Cis-acting regulatory genetic variants: application of an allele specific expression approach to HapMap populations. PLoS One. 2009; 3(12):e4105. PMC: 2605564. DOI: 10.1371/journal.pone.0004105. View

3.
Babak T, Deveale B, Armour C, Raymond C, Cleary M, van der Kooy D . Global survey of genomic imprinting by transcriptome sequencing. Curr Biol. 2008; 18(22):1735-41. DOI: 10.1016/j.cub.2008.09.044. View

4.
Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E . Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008; 40(7):904-8. DOI: 10.1038/ng.174. View

5.
Hoberman R, Dias J, Ge B, Harmsen E, Mayhew M, Verlaan D . A probabilistic approach for SNP discovery in high-throughput human resequencing data. Genome Res. 2009; 19(9):1542-52. PMC: 2752119. DOI: 10.1101/gr.092072.109. View