» Articles » PMID: 19816405

A Loop-to-base Processing Mechanism Underlies the Biogenesis of Plant MicroRNAs MiR319 and MiR159

Overview
Journal EMBO J
Date 2009 Oct 10
PMID 19816405
Citations 113
Authors
Affiliations
Soon will be listed here.
Abstract

The first step in microRNA (miRNA) biogenesis usually involves cleavage at the base of its fold-back precursor. Here, we describe a non-canonical processing mechanism for miRNAs miR319 and miR159 in Arabidopsis thaliana. We found that their biogenesis begins with the cleavage of the loop, instead of the usual cut at the base of the stem-loop structure. DICER-LIKE 1 (DCL1) proceeds then with three additional cuts until the mature miRNA is released. We further show that the conserved upper stem of the miR319 precursor is essential to organize its biogenesis, whereas sequences below the miRNA/miRNA(*) region are dispensable. In addition, the bulges present in the fold-back structure reduce the accumulation of small RNAs other than the miRNA. The biogenesis of miR319 is conserved in the moss Physcomitrella patens, showing that this processing mechanism is ancient. These results provide new insights into the plasticity of small-RNA pathways.

Citing Articles

An intron-split microRNA mediates cleavage of the mRNA encoded by low phosphate root in Solanaceae.

Medina-Calzada Z, Jing R, Moxon S, Zhu H, Xu P, Dalmay T Planta. 2025; 261(2):27.

PMID: 39775091 PMC: 11706861. DOI: 10.1007/s00425-024-04596-8.


Genome-wide analysis of miR172-mediated response to heavy metal stress in chickpea (Cicer arietinum L.): physiological, biochemical, and molecular insights.

Ucar S, Yaprak E, Yigider E, Kasapoglu A, Oner B, Ilhan E BMC Plant Biol. 2024; 24(1):1063.

PMID: 39528933 PMC: 11555882. DOI: 10.1186/s12870-024-05786-y.


Characterization and expression analysis of the B3 gene family during seed development in Akebia trifoliata.

Liu H, Li J, Xu C, Liu H, Zhao Z BMC Genomics. 2024; 25(1):1060.

PMID: 39516780 PMC: 11549857. DOI: 10.1186/s12864-024-10981-0.


RNA helicase Brr2a promotes miRNA biogenesis by properly remodelling secondary structure of pri-miRNAs.

Li X, Zhong S, Li C, Yan X, Zhu J, Li Y Nat Plants. 2024; 10(10):1532-1547.

PMID: 39271943 PMC: 11578039. DOI: 10.1038/s41477-024-01788-8.


microRNA biogenesis and stabilization in plants.

Xu Y, Chen X Fundam Res. 2024; 3(5):707-717.

PMID: 38933298 PMC: 11197542. DOI: 10.1016/j.fmre.2023.02.023.


References
1.
Qi Y, He X, Wang X, Kohany O, Jurka J, Hannon G . Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature. 2006; 443(7114):1008-12. DOI: 10.1038/nature05198. View

2.
Haas F, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R . Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol. 2008; 148(2):1055-67. PMC: 2556817. DOI: 10.1104/pp.108.125237. View

3.
Zhang B, Pan X, Cannon C, Cobb G, Anderson T . Conservation and divergence of plant microRNA genes. Plant J. 2006; 46(2):243-59. DOI: 10.1111/j.1365-313X.2006.02697.x. View

4.
Reinhart B, Weinstein E, Rhoades M, Bartel B, Bartel D . MicroRNAs in plants. Genes Dev. 2002; 16(13):1616-26. PMC: 186362. DOI: 10.1101/gad.1004402. View

5.
Han J, Lee Y, Yeom K, Kim Y, Jin H, Kim V . The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004; 18(24):3016-27. PMC: 535913. DOI: 10.1101/gad.1262504. View