» Articles » PMID: 19812033

Allosteric Inhibition of Human Porphobilinogen Synthase

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2009 Oct 9
PMID 19812033
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Porphobilinogen synthase (PBGS) catalyzes the first common step in tetrapyrrole (e.g. heme, chlorophyll) biosynthesis. Human PBGS exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. It is posited that small molecules can be found that inhibit human PBGS activity by stabilizing the hexamer. Such molecules, if present in the environment, could potentiate disease states associated with reduced PBGS activity, such as lead poisoning and ALAD porphyria, the latter of which is associated with human PBGS variants whose quaternary structure equilibrium is shifted toward the hexamer (Jaffe, E. K., and Stith, L. (2007) Am. J. Hum. Genet. 80, 329-337). Hexamer-stabilizing inhibitors of human PBGS were identified using in silico prescreening (docking) of approximately 111,000 structures to a hexamer-specific surface cavity of a human PBGS crystal structure. Seventy-seven compounds were evaluated in vitro; three provided 90-100% conversion of octamer to hexamer in a native PAGE mobility shift assay. Based on chemical purity, two (ML-3A9 and ML-3H2) were subjected to further evaluation of their effect on the quaternary structure equilibrium and enzymatic activity. Naturally occurring ALAD porphyria-associated human PBGS variants are shown to have an increased susceptibility to inhibition by both ML-3A9 and ML-3H2. ML-3H2 is a structural analog of amebicidal drugs, which have porphyria-like side effects. Data support the hypothesis that human PBGS hexamer stabilization may explain these side effects. The current work identifies allosteric ligands of human PBGS and, thus, identifies human PBGS as a medically relevant allosteric enzyme.

Citing Articles

More indications for redox-sensitive cysteine residues of the Arabidopsis 5-aminolevulinate dehydratase.

Wittmann D, Wang C, Grimm B Front Plant Sci. 2024; 14:1294802.

PMID: 38317833 PMC: 10839789. DOI: 10.3389/fpls.2023.1294802.


Heme biosynthesis depends on previously unrecognized acquisition of iron-sulfur cofactors in human amino-levulinic acid dehydratase.

Liu G, Sil D, Maio N, Tong W, Bollinger Jr J, Krebs C Nat Commun. 2020; 11(1):6310.

PMID: 33298951 PMC: 7725820. DOI: 10.1038/s41467-020-20145-9.


Porphobilinogen synthase: An equilibrium of different assemblies in human health.

Jaffe E Prog Mol Biol Transl Sci. 2020; 169:85-104.

PMID: 31952692 PMC: 7423025. DOI: 10.1016/bs.pmbts.2019.11.003.


Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

Ramirez U, Nikonova A, Liu H, Pecherskaya A, Lawrence S, Serebriiskii I BMC Cancer. 2015; 15:436.

PMID: 26016476 PMC: 4451962. DOI: 10.1186/s12885-015-1415-6.


Environmental contaminants perturb fragile protein assemblies and inhibit normal protein function.

Lawrence S, Selwood T, Jaffe E Curr Chem Biol. 2014; 7(2):196-206.

PMID: 25045409 PMC: 4102012. DOI: 10.2174/2212796811307020011.


References
1.
Jorgensen W, Duffy E . Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett. 2000; 10(11):1155-8. DOI: 10.1016/s0960-894x(00)00172-4. View

2.
Kaya A, Plewinska M, Wong D, Desnick R, Wetmur J . Human delta-aminolevulinate dehydratase (ALAD) gene: structure and alternative splicing of the erythroid and housekeeping mRNAs. Genomics. 1994; 19(2):242-8. DOI: 10.1006/geno.1994.1054. View

3.
Despaux N, Comoy E, Bohuon C, Boudene C . Purification and properties of human erythrocyte delta-amino-levulinic acid dehydratase (EC 4-2-1-24). Biochimie. 1979; 61(9):1021-8. DOI: 10.1016/s0300-9084(80)80256-2. View

4.
Stohs S, Ezzedeen F, Anderson A, Baldwin J, Makoid M . Percutaneous absorption of iodochlorhydroxyquin in humans. J Invest Dermatol. 1984; 82(2):195-8. DOI: 10.1111/1523-1747.ep12259839. View

5.
Hayouka Z, Rosenbluh J, Levin A, Loya S, Lebendiker M, Veprintsev D . Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc Natl Acad Sci U S A. 2007; 104(20):8316-21. PMC: 1895947. DOI: 10.1073/pnas.0700781104. View