» Articles » PMID: 19805547

A Bifunctional Enzyme in a Single Gene Catalyzes the Incorporation of GlcN into the Aeromonas Core Lipopolysaccharide

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2009 Oct 7
PMID 19805547
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide alpha-d-GlcN-(1-->7)-l-alpha-d-Hep-(1-->2)-l-alpha-d-Hep-(1-->3)-l-alpha-d-Hep-(1-->5)-alpha-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.

Citing Articles

Bifunctional and monofunctional α-neoagarooligosaccharide hydrolases from Streptomyces coelicolor A3(2).

Tsevelkhoroloo M, Dhakshnamoorthy V, Hong Y, Lee C, Hong S Appl Microbiol Biotechnol. 2023; 107(12):3997-4008.

PMID: 37184654 DOI: 10.1007/s00253-023-12552-x.


Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions.

Forn-Cuni G, Merino S, Tomas J Int J Mol Sci. 2017; 18(3).

PMID: 28264491 PMC: 5372535. DOI: 10.3390/ijms18030519.


The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella.

Merino S, Tomas J Front Microbiol. 2016; 7:1150.

PMID: 27507965 PMC: 4960245. DOI: 10.3389/fmicb.2016.01150.


Polar Glycosylated and Lateral Non-Glycosylated Flagella from Aeromonas hydrophila Strain AH-1 (Serotype O11).

Fulton K, Mendoza-Barbera E, Twine S, Tomas J, Merino S Int J Mol Sci. 2015; 16(12):28255-69.

PMID: 26633358 PMC: 4691044. DOI: 10.3390/ijms161226097.


The polar and lateral flagella from Plesiomonas shigelloides are glycosylated with legionaminic acid.

Merino S, Aquilini E, Fulton K, Twine S, Tomas J Front Microbiol. 2015; 6:649.

PMID: 26167161 PMC: 4481668. DOI: 10.3389/fmicb.2015.00649.


References
1.
Reith M, Singh R, Curtis B, Boyd J, Bouevitch A, Kimball J . The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics. 2008; 9:427. PMC: 2556355. DOI: 10.1186/1471-2164-9-427. View

2.
Merino S, Camprubi S, Tomas J . The role of lipopolysaccharide in complement-killing of Aeromonas hydrophila strains of serotype O:34. J Gen Microbiol. 1991; 137(7):1583-90. DOI: 10.1099/00221287-137-7-1583. View

3.
Boyer H . A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969; 41(3):459-72. DOI: 10.1016/0022-2836(69)90288-5. View

4.
Scott M . The pathogenicity of Aeromonas salmonicida (Griffin) in sea and brackish waters. J Gen Microbiol. 1968; 50(2):321-7. DOI: 10.1099/00221287-50-2-321. View

5.
Casadaban M, Cohen S . Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980; 138(2):179-207. DOI: 10.1016/0022-2836(80)90283-1. View