» Articles » PMID: 19805283

Structure of a TRNA-dependent Kinase Essential for Selenocysteine Decoding

Overview
Specialty Science
Date 2009 Oct 7
PMID 19805283
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Compared to bacteria, archaea and eukaryotes employ an additional enzyme for the biosynthesis of selenocysteine (Sec), the 21(st) natural amino acid (aa). An essential RNA-dependent kinase, O-phosphoseryl-tRNA(Sec) kinase (PSTK), converts seryl-tRNA(Sec) to O-phosphoseryl-tRNA(Sec), the immediate precursor of selenocysteinyl-tRNA(Sec). The sequence of Methanocaldococcus jannaschii PSTK (MjPSTK) suggests an N-terminal kinase domain (177 aa) followed by a presumed tRNA binding region (75 aa). The structures of MjPSTK complexed with ADP and AMPPNP revealed that this enzyme belongs to the P-loop kinase class, and that the kinase domain is closely related to gluconate kinase and adenylate kinase. ATP is bound by the P-loop domain (residues 11-18). Formed by antiparallel dimerization of two PSTK monomers, the enzyme structure shows a deep groove with positive electrostatic potential. Located in this groove is the enzyme's active site, which biochemical and genetic data suggest is composed of Asp-41, Arg-44, Glu-55, Tyr-82, Tyr-83, Met-86, and Met-132. Based on structural comparison with Escherichia coli adenylate kinase a docking model was generated that assigns these amino acids to the recognition of the terminal A76-Ser moieties of Ser-tRNA(Sec). The geometry and electrostatic environment of the groove in MjPSTK are perfectly complementary to the unusually long acceptor helix of tRNA(Sec).

Citing Articles

Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator.

Krutyholowa R, Hammermeister A, Zabel R, Abdel-Fattah W, Reinhardt-Tews A, Helm M Nucleic Acids Res. 2019; 47(9):4814-4830.

PMID: 30916349 PMC: 6511879. DOI: 10.1093/nar/gkz190.


Computational identification of the selenocysteine tRNA (tRNASec) in genomes.

Santesmasses D, Mariotti M, Guigo R PLoS Comput Biol. 2017; 13(2):e1005383.

PMID: 28192430 PMC: 5330540. DOI: 10.1371/journal.pcbi.1005383.


Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.

Itoh Y, Brocker M, Sekine S, Soll D, Yokoyama S J Mol Biol. 2014; 426(8):1723-35.

PMID: 24456689 PMC: 4306587. DOI: 10.1016/j.jmb.2014.01.003.


Synthesis and decoding of selenocysteine and human health.

Schmidt R, Simonovic M Croat Med J. 2013; 53(6):535-50.

PMID: 23275319 PMC: 3541580. DOI: 10.3325/cmj.2012.53.535.


Deprotonated imidodiphosphate in AMPPNP-containing protein structures.

Dauter M, Dauter Z Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 12):1073-5.

PMID: 22120745 PMC: 3225179. DOI: 10.1107/S0907444911046105.


References
1.
Yoshizawa S, Bock A . The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta. 2009; 1790(11):1404-14. DOI: 10.1016/j.bbagen.2009.03.010. View

2.
MacRae I, Segel I, Fisher A . Crystal structure of adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum. Biochemistry. 2000; 39(7):1613-21. DOI: 10.1021/bi9924157. View

3.
Berry M, Meador B, Bilderback T, Liang P, Glaser M, Phillips Jr G . The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins. 1994; 19(3):183-98. DOI: 10.1002/prot.340190304. View

4.
Sanner M, Olson A, Spehner J . Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996; 38(3):305-20. DOI: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. View

5.
Su D, Hohn M, Palioura S, Sherrer R, Yuan J, Soll D . How an obscure archaeal gene inspired the discovery of selenocysteine biosynthesis in humans. IUBMB Life. 2008; 61(1):35-9. DOI: 10.1002/iub.136. View