» Articles » PMID: 19794413

Ammonia Oxidation Kinetics Determine Niche Separation of Nitrifying Archaea and Bacteria

Overview
Journal Nature
Specialty Science
Date 2009 Oct 2
PMID 19794413
Citations 410
Authors
Affiliations
Soon will be listed here.
Abstract

The discovery of ammonia oxidation by mesophilic and thermophilic Crenarchaeota and the widespread distribution of these organisms in marine and terrestrial environments indicated an important role for them in the global nitrogen cycle. However, very little is known about their physiology or their contribution to nitrification. Here we report oligotrophic ammonia oxidation kinetics and cellular characteristics of the mesophilic crenarchaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1. Unlike characterized ammonia-oxidizing bacteria, SCM1 is adapted to life under extreme nutrient limitation, sustaining high specific oxidation rates at ammonium concentrations found in open oceans. Its half-saturation constant (K(m) = 133 nM total ammonium) and substrate threshold (<or=10 nM) closely resemble kinetics of in situ nitrification in marine systems and directly link ammonia-oxidizing Archaea to oligotrophic nitrification. The remarkably high specific affinity for reduced nitrogen (68,700 l per g cells per h) of SCM1 suggests that Nitrosopumilus-like ammonia-oxidizing Archaea could successfully compete with heterotrophic bacterioplankton and phytoplankton. Together these findings support the hypothesis that nitrification is more prevalent in the marine nitrogen cycle than accounted for in current biogeochemical models.

Citing Articles

Extensive paralogism in the environmental pangenome: a key factor in the ecological success of natural SAR11 populations.

Molina-Pardines C, Haro-Moreno J, Rodriguez-Valera F, Lopez-Perez M Microbiome. 2025; 13(1):41.

PMID: 39905490 PMC: 11796062. DOI: 10.1186/s40168-025-02037-6.


Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon .

Voland R, Wang H, Abruna H, Lancaster K Proc Natl Acad Sci U S A. 2025; 122(3):e2416971122.

PMID: 39823305 PMC: 11761707. DOI: 10.1073/pnas.2416971122.


Ecological dynamics explain modular denitrification in the ocean.

Sun X, Buchanan P, Zhang I, San Roman M, Babbin A, Zakem E Proc Natl Acad Sci U S A. 2024; 121(52):e2417421121.

PMID: 39693347 PMC: 11670096. DOI: 10.1073/pnas.2417421121.


Growth of soil ammonia-oxidizing archaea on air-exposed solid surface.

Abiola C, Gwak J, Lee U, Awala S, Jung M, Park W ISME Commun. 2024; 4(1):ycae129.

PMID: 39544964 PMC: 11561398. DOI: 10.1093/ismeco/ycae129.


Temporal enrichment of comammox Nitrospira and Ca. Nitrosocosmicus in a coastal plastisphere.

Yang Q, Zhong Y, Feng S, Wen P, Wang H, Wu J ISME J. 2024; 18(1).

PMID: 39375018 PMC: 11471898. DOI: 10.1093/ismejo/wrae186.


References
1.
Gruber N, Galloway J . An Earth-system perspective of the global nitrogen cycle. Nature. 2008; 451(7176):293-6. DOI: 10.1038/nature06592. View

2.
Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G . Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006; 442(7104):806-9. DOI: 10.1038/nature04983. View

3.
de la Torre J, Walker C, Ingalls A, Konneke M, Stahl D . Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol. 2008; 10(3):810-8. DOI: 10.1111/j.1462-2920.2007.01506.x. View

4.
Suzuki I, Dular U, Kwok S . Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J Bacteriol. 1974; 120(1):556-8. PMC: 245802. DOI: 10.1128/jb.120.1.556-558.1974. View

5.
Prosser J, Nicol G . Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol. 2008; 10(11):2931-41. DOI: 10.1111/j.1462-2920.2008.01775.x. View