» Articles » PMID: 19724491

Transillumination Fluorescence Imaging in Mice Using Biocompatible Upconverting Nanoparticles

Overview
Journal Opt Lett
Specialty Ophthalmology
Date 2009 Sep 3
PMID 19724491
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

We report on a systematic study of upconverting fluorescence signal generation within turbid phantoms and real tissues. An accurate three-point Green's function, describing the forward model of photon propagation, is established and experimentally validated. We further demonstrate, for the first time to our knowledge, autofluorescence-free transillumination imaging of mice that have received biocompatible upconverting nanoparticles. The method holds great promise for artifact-free whole-body visualization of optical molecular probes.

Citing Articles

Biaxial strain tuned upconversion photoluminescence of monolayer WS.

Roy S, Yang X, Gao J Sci Rep. 2024; 14(1):3860.

PMID: 38360891 PMC: 10869839. DOI: 10.1038/s41598-024-54185-8.


Efficient Lithium-Based Upconversion Nanoparticles for Single-Particle Imaging and Temperature Sensing.

Alzahrani Y, Alromaeh A, Alkahtani M Materials (Basel). 2023; 16(12).

PMID: 37374538 PMC: 10304195. DOI: 10.3390/ma16124354.


Engineering Red-Enhanced and Biocompatible Upconversion Nanoparticles.

Alkahtani M, Alsofyani N, Alfahd A, Almuqhim A, Almughem F, Alshehri A Nanomaterials (Basel). 2021; 11(2).

PMID: 33499075 PMC: 7911982. DOI: 10.3390/nano11020284.


In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing.

Plunkett S, Khatib M, Sencan I, Porter J, Kumar A, Collins J Nanoscale. 2020; 12(4):2657-2672.

PMID: 31939953 PMC: 7101076. DOI: 10.1039/c9nr07778b.


Efficient near-infrared up-conversion photoluminescence in carbon nanotubes.

Akizuki N, Aota S, Mouri S, Matsuda K, Miyauchi Y Nat Commun. 2015; 6:8920.

PMID: 26568250 PMC: 4660356. DOI: 10.1038/ncomms9920.


References
1.
Zacharakis G, Kambara H, Shih H, Ripoll J, Grimm J, Saeki Y . Volumetric tomography of fluorescent proteins through small animals in vivo. Proc Natl Acad Sci U S A. 2005; 102(51):18252-7. PMC: 1317905. DOI: 10.1073/pnas.0504628102. View

2.
Soubret A, Ntziachristos V . Fluorescence molecular tomography in the presence of background fluorescence. Phys Med Biol. 2006; 51(16):3983-4001. DOI: 10.1088/0031-9155/51/16/007. View

3.
Ntziachristos V, Ripoll J, Wang L, Weissleder R . Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005; 23(3):313-20. DOI: 10.1038/nbt1074. View

4.
Hilderbrand S, Shao F, Salthouse C, Mahmood U, Weissleder R . Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun (Camb). 2009; (28):4188-90. PMC: 2748243. DOI: 10.1039/b905927j. View

5.
Zacharakis G, Shih H, Ripoll J, Weissleder R, Ntziachristos V . Normalized transillumination of fluorescent proteins in small animals. Mol Imaging. 2006; 5(3):153-9. View