» Articles » PMID: 19648916

Phymm and PhymmBL: Metagenomic Phylogenetic Classification with Interpolated Markov Models

Overview
Journal Nat Methods
Date 2009 Aug 4
PMID 19648916
Citations 215
Authors
Affiliations
Soon will be listed here.
Abstract

Metagenomics projects collect DNA from uncharacterized environments that may contain thousands of species per sample. One main challenge facing metagenomic analysis is phylogenetic classification of raw sequence reads into groups representing the same or similar taxa, a prerequisite for genome assembly and for analyzing the biological diversity of a sample. New sequencing technologies have made metagenomics easier, by making sequencing faster, and more difficult, by producing shorter reads than previous technologies. Classifying sequences from reads as short as 100 base pairs has until now been relatively inaccurate, requiring researchers to use older, long-read technologies. We present Phymm, a classifier for metagenomic data, that has been trained on 539 complete, curated genomes and can accurately classify reads as short as 100 base pairs, a substantial improvement over previous composition-based classification methods. We also describe how combining Phymm with sequence alignment algorithms improves accuracy.

Citing Articles

Species annotation using a k-mer based KNN model.

Sangar S, Kolage P, Chunarkar-Patil P Bioinformation. 2025; 20(9):986-989.

PMID: 39917243 PMC: 11795478. DOI: 10.6026/973206300200986.


MNBC: a multithreaded Minimizer-based Naïve Bayes Classifier for improved metagenomic sequence classification.

Lu R, Dumonceaux T, Anzar M, Zovoilis A, Antonation K, Barker D Bioinformatics. 2024; 40(10).

PMID: 39388213 PMC: 11522871. DOI: 10.1093/bioinformatics/btae601.


MetaCompass: Reference-guided Assembly of Metagenomes.

Luan T, Cepeda V, Liu B, Bowen Z, Ayyangar U, Almeida M ArXiv. 2024; .

PMID: 38903742 PMC: 11188144.


Visualizing metagenomic and metatranscriptomic data: A comprehensive review.

Aplakidou E, Vergoulidis N, Chasapi M, Venetsianou N, Kokoli M, Panagiotopoulou E Comput Struct Biotechnol J. 2024; 23:2011-2033.

PMID: 38765606 PMC: 11101950. DOI: 10.1016/j.csbj.2024.04.060.


A toolbox of machine learning software to support microbiome analysis.

Marcos-Zambrano L, Lopez-Molina V, Bakir-Gungor B, Frohme M, Karaduzovic-Hadziabdic K, Klammsteiner T Front Microbiol. 2023; 14:1250806.

PMID: 38075858 PMC: 10704913. DOI: 10.3389/fmicb.2023.1250806.


References
1.
Manichanh C, Chapple C, Frangeul L, Gloux K, Guigo R, Dore J . A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library. Nucleic Acids Res. 2008; 36(16):5180-8. PMC: 2532719. DOI: 10.1093/nar/gkn496. View

2.
Delcher A, Bratke K, Powers E, Salzberg S . Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007; 23(6):673-9. PMC: 2387122. DOI: 10.1093/bioinformatics/btm009. View

3.
Salzberg S, Delcher A, Kasif S, White O . Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 1998; 26(2):544-8. PMC: 147303. DOI: 10.1093/nar/26.2.544. View

4.
Pruitt K, Tatusova T, Maglott D . NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2006; 35(Database issue):D61-5. PMC: 1716718. DOI: 10.1093/nar/gkl842. View

5.
Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy A . Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods. 2007; 4(6):495-500. DOI: 10.1038/nmeth1043. View