» Articles » PMID: 19642274

Predicting Flexible Length Linear B-cell Epitopes

Overview
Specialty Biology
Date 2009 Aug 1
PMID 19642274
Citations 88
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting B-cell epitopes are highly desirable. We explore two machine learning approaches for predicting flexible length linear B-cell epitopes. The first approach utilizes four sequence kernels for determining a similarity score between any arbitrary pair of variable length sequences. The second approach utilizes four different methods of mapping a variable length sequence into a fixed length feature vector. Based on our empirical comparisons, we propose FBCPred, a novel method for predicting flexible length linear B-cell epitopes using the subsequence kernel. Our results demonstrate that FBCPred significantly outperforms all other classifiers evaluated in this study. An implementation of FBCPred and the datasets used in this study are publicly available through our linear B-cell epitope prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.

Citing Articles

Computational epitope-based vaccine design with bioinformatics approach; a review.

Basmenj E, Pajhouh S, Ebrahimi Fallah A, Naijian R, Rahimi E, Atighy H Heliyon. 2025; 11(1):e41714.

PMID: 39866399 PMC: 11761309. DOI: 10.1016/j.heliyon.2025.e41714.


An Integrated Approach to Develop a Potent Vaccine Candidate Construct Against Prostate Cancer by Utilizing Machine Learning and Bioinformatics.

Albutti A Cancer Rep (Hoboken). 2024; 7(12):e70079.

PMID: 39651594 PMC: 11626413. DOI: 10.1002/cnr2.70079.


Integrating machine learning to advance epitope mapping.

Grewal S, Hegde N, Yanow S Front Immunol. 2024; 15:1463931.

PMID: 39403389 PMC: 11471525. DOI: 10.3389/fimmu.2024.1463931.


PhIP-Seq: methods, applications and challenges.

Huang Z, Gunarathne S, Liu W, Zhou Y, Jiang Y, Li S Front Bioinform. 2024; 4:1424202.

PMID: 39295784 PMC: 11408297. DOI: 10.3389/fbinf.2024.1424202.


Synthetic Peptides Selected by Immunoinformatics as Potential Tools for the Specific Diagnosis of Canine Visceral Leishmaniasis.

Moreira G, Maia R, Soares N, Ostolin T, Coura-Vital W, Aguiar-Soares R Microorganisms. 2024; 12(5).

PMID: 38792746 PMC: 11123790. DOI: 10.3390/microorganisms12050906.


References
1.
Chinnasamy A, Sung W, Mittal A . Protein structure and fold prediction using tree-augmented naive Bayesian classifier. Pac Symp Biocomput. 2004; :387-98. DOI: 10.1142/9789812704856_0037. View

2.
Saha S, Bhasin M, Raghava G . Bcipep: a database of B-cell epitopes. BMC Genomics. 2005; 6:79. PMC: 1173103. DOI: 10.1186/1471-2164-6-79. View

3.
Flower D . Immunoinformatics. Predicting immunogenicity in silico. Preface. Methods Mol Biol. 2008; 409:v-vi. DOI: 10.1007/978-1-60327-118-9. View

4.
Luo R, Feng Z, Liu J . Prediction of protein structural class by amino acid and polypeptide composition. Eur J Biochem. 2002; 269(17):4219-25. DOI: 10.1046/j.1432-1033.2002.03115.x. View

5.
Zaki N, Deris S, Illias R . Application of string kernels in protein sequence classification. Appl Bioinformatics. 2005; 4(1):45-52. DOI: 10.2165/00822942-200504010-00005. View