» Articles » PMID: 19632231

The Ion Channel TRPA1 is Required for Normal Mechanosensation and is Modulated by Algesic Stimuli

Abstract

Background & Aims: The transient receptor potential (TRP) channel family includes transducers of mechanical and chemical stimuli for visceral sensory neurons. TRP ankyrin 1 (TRPA1) is implicated in inflammatory pain; it interacts with G-protein-coupled receptors, but little is known about its role in the gastrointestinal (GI) tract. Sensory information from the GI tract is conducted via 5 afferent subtypes along 3 pathways.

Methods: Nodose and dorsal root ganglia whose neurons innnervate 3 different regions of the GI tract were analyzed from wild-type and TRPA1(-/-) mice using quantitative reverse-transcription polymerase chain reaction, retrograde labeling, and in situ hybridization. Distal colon sections were analyzed by immunohistochemistry. In vitro electrophysiology and pharmacology studies were performed, and colorectal distension and visceromotor responses were measured. Colitis was induced by administration of trinitrobenzene sulphonic acid.

Results: TRPA1 is required for normal mechano- and chemosensory function in specific subsets of vagal, splanchnic, and pelvic afferents. The behavioral responses to noxious colonic distension were substantially reduced in TRPA1(-/-) mice. TRPA1 agonists caused mechanical hypersensitivity, which increased in mice with colitis. Colonic afferents were activated by bradykinin and capsaicin, which mimic effects of tissue damage; wild-type and TRPA1(-/-) mice had similar direct responses to these 2 stimuli. After activation by bradykinin, wild-type afferents had increased mechanosensitivity, whereas, after capsaicin exposure, mechanosensitivity was reduced: these changes were absent in TRPA1(-/-) mice. No interaction between protease-activated receptor-2 and TRPA1 was evident.

Conclusions: These findings demonstrate a previously unrecognized role for TRPA1 in normal and inflamed mechanosensory function and nociception within the viscera.

Citing Articles

Advances in the pathological mechanisms and clinical treatments of chronic visceral pain.

Li Y, Zhang F, Xu T, Weng R, Zhang H, Chen Q Mol Pain. 2024; 20:17448069241305942.

PMID: 39673493 PMC: 11645724. DOI: 10.1177/17448069241305942.


GPR35 agonists inhibit TRPA1-mediated colonic nociception through suppression of substance P release.

Gupta R, Higham J, Pearce A, Urriola-Munoz P, Barker K, Paine L Pain. 2024; 166(3):596-613.

PMID: 39382322 PMC: 11808708. DOI: 10.1097/j.pain.0000000000003399.


Dual role of transient receptor potential ankyrin 1 in respiratory and gastrointestinal physiology: From molecular mechanisms to therapeutic targets.

Tekulapally K, Lee J, Kim D, Rahman M, Park C, Kim Y Front Physiol. 2024; 15:1413902.

PMID: 39022308 PMC: 11251976. DOI: 10.3389/fphys.2024.1413902.


Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis.

Ambrogi M, Vezina C Front Cell Infect Microbiol. 2024; 14:1346087.

PMID: 38736751 PMC: 11082347. DOI: 10.3389/fcimb.2024.1346087.


Fundamental Neurochemistry Review: The role of enteroendocrine cells in visceral pain.

Londregan A, Alexander T, Covarrubias M, Waldman S J Neurochem. 2023; 167(6):719-732.

PMID: 38037432 PMC: 10917140. DOI: 10.1111/jnc.16022.


References
1.
Bautista D, Jordt S, Nikai T, Tsuruda P, Read A, Poblete J . TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006; 124(6):1269-82. DOI: 10.1016/j.cell.2006.02.023. View

2.
Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell G, Santini D . Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004; 126(3):693-702. DOI: 10.1053/j.gastro.2003.11.055. View

3.
Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y . TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005; 115(9):2393-401. PMC: 1187934. DOI: 10.1172/JCI25437. View

4.
Page A, Martin C, Blackshaw L . Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J Neurophysiol. 2002; 87(4):2095-103. DOI: 10.1152/jn.00785.2001. View

5.
Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K . Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain. 2008; 131(Pt 5):1241-51. DOI: 10.1093/brain/awn060. View