Tseng C, Ding Y, Chen Z, Lan H, Li H, Cheng Y
Inorg Chem. 2024; 63(24):11361-11368.
PMID: 38815165
PMC: 11190976.
DOI: 10.1021/acs.inorgchem.4c01420.
Ajayi T, Lough A, Morris R
ACS Omega. 2024; 9(17):19690-19699.
PMID: 38708235
PMC: 11064035.
DOI: 10.1021/acsomega.4c02076.
Zhang L, Dai W, Rong S, Schwaneberg U, Xu G, Ni Y
Protein Sci. 2024; 33(4):e4933.
PMID: 38501647
PMC: 10949390.
DOI: 10.1002/pro.4933.
Song X, Bai S, Li Y, Yi T, Long X, Pu Q
Sci Adv. 2023; 9(51):eadk4950.
PMID: 38117889
PMC: 10732522.
DOI: 10.1126/sciadv.adk4950.
Fessler J, Junge K, Beller M
Chem Sci. 2023; 14(41):11374-11380.
PMID: 37886090
PMC: 10599485.
DOI: 10.1039/d3sc02879h.
Rational Design of a Facially Coordinating P,N,N Ligand for Manganese-Catalysed Enantioselective Hydrogenation of Cyclic Ketones.
Oates C, Goodfellow A, Buhl M, Clarke M
Angew Chem Int Ed Engl. 2022; 62(3):e202212479.
PMID: 36341982
PMC: 10107995.
DOI: 10.1002/anie.202212479.
Sustainable Wacker-Type Oxidations.
Rajeshwaran P, Trouve J, Youssef K, Gramage-Doria R
Angew Chem Int Ed Engl. 2022; 61(50):e202211016.
PMID: 36164675
PMC: 10092001.
DOI: 10.1002/anie.202211016.
Terpyridine Diphosphine Ruthenium Complexes as Efficient Photocatalysts for the Transfer Hydrogenation of Carbonyl Compounds.
Ballico M, Alessi D, Jandl C, Lovison D, Baratta W
Chemistry. 2022; 28(65):e202201722.
PMID: 36001351
PMC: 9828271.
DOI: 10.1002/chem.202201722.
Ruthenium-catalyzed asymmetric hydrogenation of aromatic and heteroaromatic ketones using cinchona alkaloid-derived NNP ligands.
Zhang L, Chen Q, Li L, Jiang J, Sun H, Li L
RSC Adv. 2022; 12(23):14912-14916.
PMID: 35702223
PMC: 9115770.
DOI: 10.1039/d2ra02211g.
Teaming up main group metals with metallic iron to boost hydrogenation catalysis.
Farber C, Stegner P, Zenneck U, Knupfer C, Bendt G, Schulz S
Nat Commun. 2022; 13(1):3210.
PMID: 35680902
PMC: 9184469.
DOI: 10.1038/s41467-022-30840-4.
The mechanistic investigations of photochemical carbonyl elimination and oxidative addition reactions of (η-CH)M(CO), (M = Mn and Re) complexes.
Zhang Z, Su M
RSC Adv. 2022; 8(20):10987-10998.
PMID: 35541546
PMC: 9078969.
DOI: 10.1039/c8ra01118d.
Lewis acidic FeCl promoted 2-aza-Cope rearrangement to afford α-substituted homoallylamines in dimethyl carbonate.
Gadde K, Daelemans J, Maes B, Abbaspour Tehrani K
RSC Adv. 2022; 9(31):18013-18017.
PMID: 35520547
PMC: 9064679.
DOI: 10.1039/c9ra03277k.
Indirect reduction of CO and recycling of polymers by manganese-catalyzed transfer hydrogenation of amides, carbamates, urea derivatives, and polyurethanes.
Liu X, Werner T
Chem Sci. 2021; 12(31):10590-10597.
PMID: 34447552
PMC: 8356819.
DOI: 10.1039/d1sc02663a.
Chiral -iron(ii) complexes with metal- and ligand-centered chirality for highly regio- and enantioselective alkylation of N-heteroaromatics.
Wei J, Cao B, Tse C, Chang X, Zhou C, Che C
Chem Sci. 2021; 11(3):684-693.
PMID: 34123041
PMC: 8145867.
DOI: 10.1039/c9sc04858h.
Chiral Fe(ii) complex catalyzed enantioselective [1,3] O-to-C rearrangement of alkyl vinyl ethers and synthesis of chromanols and beyond.
Wang L, Zhou P, Lin Q, Dong S, Liu X, Feng X
Chem Sci. 2021; 11(37):10101-10106.
PMID: 34094271
PMC: 8162448.
DOI: 10.1039/d0sc04340k.
Chiral-at-Iron Catalyst for Highly Enantioselective and Diastereoselective Hetero-Diels-Alder Reaction.
Hong Y, Cui T, Ivlev S, Xie X, Meggers E
Chemistry. 2021; 27(33):8557-8563.
PMID: 33860567
PMC: 8251941.
DOI: 10.1002/chem.202100703.
Recent Advances in Asymmetric Iron Catalysis.
Casnati A, Lanzi M, Cera G
Molecules. 2020; 25(17).
PMID: 32858925
PMC: 7503417.
DOI: 10.3390/molecules25173889.
Computational Prediction of Chiral Iron Complexes for Asymmetric Transfer Hydrogenation of Pyruvic Acid to Lactic Acid.
Wang W, Yang X
Molecules. 2020; 25(8).
PMID: 32325984
PMC: 7221593.
DOI: 10.3390/molecules25081892.
Asymmetric Transfer Hydrogenation of Arylketones Catalyzed by Enantiopure Ruthenium(II)/Pybox Complexes Containing Achiral Phosphonite and Phosphinite Ligands.
Claros M, de Julian E, Diez J, Lastra E, Gamasa M
Molecules. 2020; 25(4).
PMID: 32102166
PMC: 7070392.
DOI: 10.3390/molecules25040990.
Nanoparticulate Metal Oxide Top Electrode Interface Modification Improves the Thermal Stability of Inverted Perovskite Photovoltaics.
Papadas I, Galatopoulos F, Armatas G, Tessler N, Choulis S
Nanomaterials (Basel). 2019; 9(11).
PMID: 31739544
PMC: 6915520.
DOI: 10.3390/nano9111616.