» Articles » PMID: 19580746

Structural and Viscoelastic Properties of Actin/filamin Networks: Cross-linked Versus Bundled Networks

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2009 Jul 8
PMID 19580746
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

The high diversity of cytoskeletal actin structures is accomplished by myriads of actin binding proteins (ABPs). Depending on its concentration, even a single type of ABP can induce different actin microstructures. Thus, for an overall understanding of the cytoskeleton, a detailed characterization of the cross-linker's effect on structural and mechanical properties of actin networks is required for each ABP. Using confocal microscopy and macrorheology, we investigate both cross-linked and bundled actin/filamin networks and compare their microstructures as well as their viscoelastic properties in the linear and the nonlinear regime.

Citing Articles

From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission.

Katsuta H, Sokabe M, Hirata H Front Cell Dev Biol. 2024; 12:1444827.

PMID: 39193363 PMC: 11347286. DOI: 10.3389/fcell.2024.1444827.


Morphological control of bundled actin networks subject to fixed-mass depletion.

Clarke J, Melcher L, Crowell A, Cavanna F, Houser J, Graham K J Chem Phys. 2024; 161(7).

PMID: 39166892 PMC: 11663489. DOI: 10.1063/5.0197269.


Visualizing Actin Packing and the Effects of Actin Attachment on Lipid Membrane Viscosity Using Molecular Rotors.

Ioannou I, Brooks N, Kuimova M, Elani Y JACS Au. 2024; 4(5):2041-2049.

PMID: 38818078 PMC: 11134356. DOI: 10.1021/jacsau.4c00237.


Actin crosslinking by α-actinin averts viscous dissipation of myosin force transmission in stress fibers.

Katsuta H, Okuda S, Nagayama K, Machiyama H, Kidoaki S, Kato M iScience. 2023; 26(3):106090.

PMID: 36852278 PMC: 9958379. DOI: 10.1016/j.isci.2023.106090.


Organization and dynamics of cross-linked actin filaments in confined environments.

Akenuwa O, Abel S Biophys J. 2022; 122(1):30-42.

PMID: 36461638 PMC: 9822838. DOI: 10.1016/j.bpj.2022.11.2944.


References
1.
Ward S, Weins A, Pollak M, Weitz D . Dynamic viscoelasticity of actin cross-linked with wild-type and disease-causing mutant alpha-actinin-4. Biophys J. 2008; 95(10):4915-23. PMC: 2576355. DOI: 10.1529/biophysj.108.131722. View

2.
Tseng Y, An K, Esue O, Wirtz D . The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem. 2003; 279(3):1819-26. DOI: 10.1074/jbc.M306090200. View

3.
Janmey P, Peetermans J, Zaner K, Stossel T, Tanaka T . Structure and mobility of actin filaments as measured by quasielastic light scattering, viscometry, and electron microscopy. J Biol Chem. 1986; 261(18):8357-62. View

4.
Kurokawa H, Fujii W, Ohmi K, Sakurai T, Nonomura Y . Simple and rapid purification of brevin. Biochem Biophys Res Commun. 1990; 168(2):451-7. DOI: 10.1016/0006-291x(90)92342-w. View

5.
Stossel T, Condeelis J, Cooley L, Hartwig J, Noegel A, Schleicher M . Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001; 2(2):138-45. DOI: 10.1038/35052082. View