» Articles » PMID: 19527551

Meta-analysis of a Polymorphic Surface Glycoprotein of the Parasitic Protozoa Cryptosporidium Parvum and Cryptosporidium Hominis

Overview
Date 2009 Jun 17
PMID 19527551
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Due to its extensive polymorphism, a partial sequence of the Cryptosporidium surface glycoprotein gene gp60 has been frequently used as a genetic marker. I explored the global diversity of this protein, and compared its sequence diversity in Cryptosporidium parvum and Cryptosporidium hominis. In marked contrast to the geographical partition of C. parvum and C. hominis multi-locus genotypes, gp60 allelic groups showed no evidence of segregating in space, or of differing with respect to geographical diversity. Globally, genetic diversity of C. hominis gp60 exceeded that of C. parvum. Within C. parvum, gp60 alleles originating from human isolates were more diverse than those infecting ruminants. Phylogenetic analysis grouped gp60 sequences into a small number of relatively homogenous allelic groups, with only a small number of alleles having evolved independently. With the notable exception of a group of alleles restricted to humans, C. parvum alleles are found in ruminants and humans.

Citing Articles

Identification of the glycopeptide epitope recognized by a protective monoclonal antibody.

Bhalchandra S, Gevers K, Heimburg-Molinaro J, van Roosmalen M, Coppens I, Cummings R Infect Immun. 2023; 91(10):e0027523.

PMID: 37725059 PMC: 10580954. DOI: 10.1128/iai.00275-23.


A highly antigenic fragment within the zoonotic Cryptosporidium parvum Gp900 glycoprotein (Domain 3) is absent in human restricted Cryptosporidium species.

Dayao D, Jaskiewicz J, Sheoran A, Widmer G, Tzipori S PLoS One. 2023; 18(8):e0287997.

PMID: 37590269 PMC: 10434960. DOI: 10.1371/journal.pone.0287997.


Multilocus Sequence Typing helps understand the genetic diversity of Cryptosporidium hominis and Cryptosporidium parvum isolated from Colombian patients.

Uran-Velasquez J, Alzate J, Farfan-Garcia A, Gomez-Duarte O, Martinez-Rosado L, Dominguez-Hernandez D PLoS One. 2022; 17(7):e0270995.

PMID: 35802653 PMC: 9269747. DOI: 10.1371/journal.pone.0270995.


The Long and Short of Next Generation Sequencing for Research.

Mkandawire T, Sateriale A Front Cell Infect Microbiol. 2022; 12:871860.

PMID: 35419299 PMC: 8995782. DOI: 10.3389/fcimb.2022.871860.


Prevalence of spp. in Yaks () in China: A Systematic Review and Meta-Analysis.

Geng H, Ni H, Li J, Jiang J, Wang W, Wei X Front Cell Infect Microbiol. 2021; 11:770612.

PMID: 34733797 PMC: 8558464. DOI: 10.3389/fcimb.2021.770612.


References
1.
Cohen S, Dalle F, Gallay A, Di Palma M, Bonnin A, Ward H . Identification of Cpgp40/15 Type Ib as the predominant allele in isolates of Cryptosporidium spp. from a waterborne outbreak of gastroenteritis in South Burgundy, France. J Clin Microbiol. 2006; 44(2):589-91. PMC: 1392645. DOI: 10.1128/JCM.44.2.589-591.2006. View

2.
Peng M, Wilson M, Holland R, Meshnick S, Lal A, Xiao L . Genetic diversity of Cryptosporidium spp. in cattle in Michigan: implications for understanding the transmission dynamics. Parasitol Res. 2003; 90(3):175-80. DOI: 10.1007/s00436-003-0834-5. View

3.
Jex A, Pangasa A, Campbell B, Whipp M, Hogg G, Sinclair M . Classification of Cryptosporidium species from patients with sporadic cryptosporidiosis by use of sequence-based multilocus analysis following mutation scanning. J Clin Microbiol. 2008; 46(7):2252-62. PMC: 2446878. DOI: 10.1128/JCM.00116-08. View

4.
Misic Z, Abe N . Subtype analysis of Cryptosporidium parvum isolates from calves on farms around Belgrade, Serbia and Montenegro, using the 60 kDa glycoprotein gene sequences. Parasitology. 2006; 134(Pt 3):351-8. DOI: 10.1017/S0031182006001508. View

5.
Geurden T, Berkvens D, Martens C, Casaert S, Vercruysse J, Claerebout E . Molecular epidemiology with subtype analysis of Cryptosporidium in calves in Belgium. Parasitology. 2007; 134(Pt.14):1981-7. DOI: 10.1017/S0031182007003460. View