» Articles » PMID: 19524507

A Pleiotropically Acting MicroRNA, MiR-31, Inhibits Breast Cancer Metastasis

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2009 Jun 16
PMID 19524507
Citations 441
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNAs are well suited to regulate tumor metastasis because of their capacity to coordinately repress numerous target genes, thereby potentially enabling their intervention at multiple steps of the invasion-metastasis cascade. We identify a microRNA exemplifying these attributes, miR-31, whose expression correlates inversely with metastasis in human breast cancer patients. Overexpression of miR-31 in otherwise-aggressive breast tumor cells suppresses metastasis. We deploy a stable microRNA sponge strategy to inhibit miR-31 in vivo; this allows otherwise-nonaggressive breast cancer cells to metastasize. These phenotypes do not involve confounding influences on primary tumor development and are specifically attributable to miR-31-mediated inhibition of several steps of metastasis, including local invasion, extravasation or initial survival at a distant site, and metastatic colonization. Such pleiotropy is achieved via coordinate repression of a cohort of metastasis-promoting genes, including RhoA. Indeed, RhoA re-expression partially reverses miR-31-imposed metastasis suppression. These findings indicate that miR-31 uses multiple mechanisms to oppose metastasis.

Citing Articles

Application of multi-omics techniques to androgenetic alopecia: Current status and perspectives.

Li Y, Dong T, Wan S, Xiong R, Jin S, Dai Y Comput Struct Biotechnol J. 2024; 23:2623-2636.

PMID: 39021583 PMC: 11253216. DOI: 10.1016/j.csbj.2024.06.026.


miRNAs in radiotherapy resistance of cancer; a comprehensive review.

Al-Hawary S, Jasim S, Altalbawy F, Kumar A, Kaur H, Pramanik A Cell Biochem Biophys. 2024; 82(3):1665-1679.

PMID: 38805114 DOI: 10.1007/s12013-024-01329-2.


miR-199a/b-3p inhibits HCC cell proliferation and invasion through a novel compensatory signaling pathway DJ-1\Ras\PI3K/AKT.

Ma L, Wu L, Liu S, Zhang X, Luo X, Nawaz S Sci Rep. 2024; 14(1):224.

PMID: 38168113 PMC: 10762019. DOI: 10.1038/s41598-023-48760-8.


Understanding crosstalk of organ tropism, tumor microenvironment and noncoding RNAs in breast cancer metastasis.

Chakraborty S, Banerjee S Mol Biol Rep. 2023; 50(11):9601-9623.

PMID: 37792172 DOI: 10.1007/s11033-023-08852-0.


Genetic variations in tumor-suppressor miRNA-encoding genes and their target genes: focus on breast cancer development and possible therapeutic strategies.

Chhichholiya Y, Singh H, Singh S, Munshi A Clin Transl Oncol. 2023; 26(1):1-15.

PMID: 37093457 DOI: 10.1007/s12094-023-03176-8.


References
1.
Silahtaroglu A, Nolting D, Dyrskjot L, Berezikov E, Moller M, Tommerup N . Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc. 2007; 2(10):2520-8. DOI: 10.1038/nprot.2007.313. View

2.
Calin G, Sevignani C, Dumitru C, Hyslop T, Noch E, Yendamuri S . Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004; 101(9):2999-3004. PMC: 365734. DOI: 10.1073/pnas.0307323101. View

3.
Steeg P . Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer. 2003; 3(1):55-63. DOI: 10.1038/nrc967. View

4.
Fidler I . The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003; 3(6):453-8. DOI: 10.1038/nrc1098. View

5.
Massague J . TGFbeta in Cancer. Cell. 2008; 134(2):215-30. PMC: 3512574. DOI: 10.1016/j.cell.2008.07.001. View