» Articles » PMID: 19515926

Role of Amyloid-beta Glycine 33 in Oligomerization, Toxicity, and Neuronal Plasticity

Overview
Journal J Neurosci
Specialty Neurology
Date 2009 Jun 12
PMID 19515926
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

The aggregation of the amyloid-beta (Abeta) peptide plays a pivotal role in the pathogenesis of Alzheimer's disease, as soluble oligomers are intimately linked to neuronal toxicity and inhibition of hippocampal long-term potentiation (LTP). In the C-terminal region of Abeta there are three consecutive GxxxG dimerization motifs, which we could previously demonstrate to play a critical role in the generation of Abeta. Here, we show that glycine 33 (G33) of the central GxxxG interaction motif within the hydrophobic Abeta sequence is important for the aggregation dynamics of the peptide. Abeta peptides with alanine or isoleucine substitutions of G33 displayed an increased propensity to form higher oligomers, which we could attribute to conformational changes. Importantly, the oligomers of G33 variants were much less toxic than Abeta(42) wild type (WT), in vitro and in vivo. Also, whereas Abeta(42) WT is known to inhibit LTP, Abeta(42) G33 variants had lost the potential to inhibit LTP. Our findings reveal that conformational changes induced by G33 substitutions unlink toxicity and oligomerization of Abeta on the molecular level and suggest that G33 is the key amino acid in the toxic activity of Abeta. Thus, a specific toxic conformation of Abeta exists, which represents a promising target for therapeutic interventions.

Citing Articles

Di-caffeoylquinic acid: a potential inhibitor for amyloid-beta aggregation.

Sun Y, Wang X, Zhang X, Li Y, Wang D, Sun F J Nat Med. 2024; 78(4):1029-1043.

PMID: 38926328 DOI: 10.1007/s11418-024-01825-y.


Delineating the Role of GxxxG Motif in Amyloidogenesis: A New Perspective in Targeting Amyloid-Beta Mediated AD Pathogenesis.

Sarkar D, Bhunia A ACS Bio Med Chem Au. 2024; 4(1):4-19.

PMID: 38404748 PMC: 10885112. DOI: 10.1021/acsbiomedchemau.3c00055.


Toward the Noninvasive Diagnosis of Alzheimer's Disease: Molecular Basis for the Specificity of Curcumin for Fibrillar Amyloid-β.

Khurshid B, Rehman A, Muhammad S, Wadood A, Anwar J ACS Omega. 2022; 7(25):22032-22038.

PMID: 35785332 PMC: 9245119. DOI: 10.1021/acsomega.2c02995.


The amyloid concentric β-barrel hypothesis: Models of amyloid beta 42 oligomers and annular protofibrils.

Durell S, Kayed R, Guy H Proteins. 2022; 90(5):1190-1209.

PMID: 35038191 PMC: 9390004. DOI: 10.1002/prot.26301.


Early Divergence in Misfolding Pathways of Amyloid-Beta Peptides.

Mamone S, Gloggler S, Becker S, Rezaei-Ghaleh N Chemphyschem. 2021; 22(21):2158-2163.

PMID: 34355840 PMC: 8596873. DOI: 10.1002/cphc.202100542.


References
1.
Martins I, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W . Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J. 2007; 27(1):224-33. PMC: 2206134. DOI: 10.1038/sj.emboj.7601953. View

2.
Roychaudhuri R, Yang M, Hoshi M, Teplow D . Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem. 2008; 284(8):4749-53. PMC: 3837440. DOI: 10.1074/jbc.R800036200. View

3.
Morimoto A, Irie K, Murakami K, Masuda Y, Ohigashi H, Nagao M . Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement. J Biol Chem. 2004; 279(50):52781-8. DOI: 10.1074/jbc.M406262200. View

4.
Finelli A, Kelkar A, Song H, Yang H, Konsolaki M . A model for studying Alzheimer's Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 2004; 26(3):365-75. DOI: 10.1016/j.mcn.2004.03.001. View

5.
Schmechel A, Zentgraf H, Scheuermann S, Fritz G, Pipkorn R, Reed J . Alzheimer beta-amyloid homodimers facilitate A beta fibrillization and the generation of conformational antibodies. J Biol Chem. 2003; 278(37):35317-24. DOI: 10.1074/jbc.M303547200. View