» Articles » PMID: 19435332

Optimization of Encoded Hydrogel Particles for Nucleic Acid Quantification

Overview
Journal Anal Chem
Specialty Chemistry
Date 2009 May 14
PMID 19435332
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

The accurate quantification of nucleic acids is of utmost importance for clinical diagnostics, drug discovery, and basic science research. These applications require the concurrent measurement of multiple targets while demanding high-throughput analysis, high sensitivity, specificity between closely related targets, and a wide dynamic range. In attempt to create a technology that can simultaneously meet these demands, we recently developed a method of multiplexed analysis using encoded hydrogel particles. Here, we demonstrate tuning of hydrogel porosity with semi-interpenetrating networks of poly(ethylene glycol), develop a quantitative model to understand hybridization kinetics, and use the findings from these studies to enhance particle design for nucleic acid detection. With an optimized particle design and efficient fluorescent labeling scheme, we demonstrate subattomole sensitivity and single-nucleotide specificity for small RNA targets.

Citing Articles

Multiplex Assay for Rapid Detection and Analysis of Nucleic Acid Using Barcode Receptor Encoded Particle (BREP).

Jung S, Bong K, Na W Biomedicines. 2022; 10(12).

PMID: 36552002 PMC: 9775236. DOI: 10.3390/biomedicines10123246.


High-throughput selection of cells based on accumulated growth and division using PicoShell particles.

van Zee M, de Rutte J, Rumyan R, Williamson C, Burnes T, Radakovits R Proc Natl Acad Sci U S A. 2022; 119(4).

PMID: 35046027 PMC: 8794849. DOI: 10.1073/pnas.2109430119.


Quantitative and Multiplex Detection of Extracellular Vesicle-Derived MicroRNA via Rolling Circle Amplification within Encoded Hydrogel Microparticles.

Al Sulaiman D, Juthani N, Doyle P Adv Healthc Mater. 2022; 11(10):e2102332.

PMID: 35029040 PMC: 9117410. DOI: 10.1002/adhm.202102332.


Highly Magnetized Encoded Hydrogel Microparticles with Enhanced Rinsing Capabilities for Efficient microRNA Detection.

Jang W, Kim J, Mun S, Kim S, Bong K Biomedicines. 2021; 9(7).

PMID: 34356912 PMC: 8301431. DOI: 10.3390/biomedicines9070848.


MRBLES 2.0: High-throughput generation of chemically functionalized spectrally and magnetically encoded hydrogel beads using a simple single-layer microfluidic device.

Feng Y, White A, Hein J, Appel E, Fordyce P Microsyst Nanoeng. 2020; 6:109.

PMID: 33299601 PMC: 7704393. DOI: 10.1038/s41378-020-00220-3.


References
1.
Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik A, Hentze M . A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA. 2006; 12(5):913-20. PMC: 1440900. DOI: 10.1261/rna.2332406. View

2.
Sorokin N, Chechetkin V, Pankov S, Somova O, Livshits M, Donnikov M . Kinetics of hybridization on surface oligonucleotide microchips: theory, experiment, and comparison with hybridization on gel-based microchips. J Biomol Struct Dyn. 2006; 24(1):57-66. DOI: 10.1080/07391102.2006.10507099. View

3.
Gao Y, Wolf L, Georgiadis R . Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res. 2006; 34(11):3370-7. PMC: 1488884. DOI: 10.1093/nar/gkl422. View

4.
Volinia S, Calin G, Liu C, Ambs S, Cimmino A, Petrocca F . A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006; 103(7):2257-61. PMC: 1413718. DOI: 10.1073/pnas.0510565103. View

5.
Calin G, Ferracin M, Cimmino A, Di Leva G, Shimizu M, E Wojcik S . A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005; 353(17):1793-801. DOI: 10.1056/NEJMoa050995. View