Quinoline Alkaloids As Intercalative Topoisomerase Inhibitors
Overview
Authors
Affiliations
Quinoline alkaloids are abundant in the Rutaceae, and many have exhibited cytotoxic activity. Because structurally related antitumor alkaloids such as camptothecin and fagaronine are known to function as intercalative topoisomerase poisons, it is hypothesized that cytotoxic Stauranthus alkaloids may also serve as intercalative topoisomerase inhibitors. To test this hypothesis theoretically, ten Stauranthus quinoline alkaloids were examined for potential intercalation into DNA using a molecular docking approach. Four of the alkaloids (stauranthine, skimmianine, 3',6'-dihydroxy-3',6'-dihydrostauranthine, and trans-3',4'-dihydroxy-3',4'-dihydrostauranthine) were able to intercalatively dock consistently into DNA. In order to probe the intermolecular interactions that may be responsible for intercalation of these quinoline alkaloids, density functional calculations have been carried out using both the B3LYP and M06 functionals. M06 calculations indicated favorable pi-pi interactions between either skimmianine or stauranthine and the guanine-cytosine base pair. Furthermore, the lowest-energy face-to-face orientation of stauranthine with guanine is consistent with favorable dipole-dipole orientations, favorable electrostatic interactions, and favorable frontier molecular orbital interactions. Likewise, the lowest-energy face-to-face orientation of stauranthine with the guanine-cytosine base pair reveals favorable electrostatic interactions as well as frontier molecular orbital interactions. Thus, not only can quinoline alkaloids dock intercalatively into DNA, but the docked orientations are also electronically favorable.
Lu J, Lan H, Zeng D, Song J, Hao Y, Xing A RSC Adv. 2025; 15(1):231-243.
PMID: 39758910 PMC: 11694625. DOI: 10.1039/d4ra06954d.
Quinoline Derivatives as Promising Scaffolds for Antitubercular Activity: A Comprehensive Review.
Owais M, Kumar A, Hasan S, Singh K, Azad I, Hussain A Mini Rev Med Chem. 2024; 24(13):1238-1251.
PMID: 38185891 DOI: 10.2174/0113895575281039231218112953.
Aguiar A, Parisi J, Granito R, de Sousa L, Renno A, Gazarini M Mar Drugs. 2021; 19(3).
PMID: 33670878 PMC: 7997450. DOI: 10.3390/md19030134.
Lipid-derived electrophiles mediate the effects of chemotherapeutic topoisomerase I poisons.
Flor A, Wolfgeher D, Li J, Hanakahi L, Kron S Cell Chem Biol. 2020; 28(6):776-787.e8.
PMID: 33352117 PMC: 8206239. DOI: 10.1016/j.chembiol.2020.11.011.
Alvarez-Caballero J, Cuca-Suarez L, Coy-Barrera E Biomolecules. 2019; 9(10).
PMID: 31597257 PMC: 6843300. DOI: 10.3390/biom9100585.