Akbar H, Ali A, Mohammad S, Anjum F, Ahmad A, Afzal A
Molecules. 2024; 29(9).
PMID: 38731594
PMC: 11085058.
DOI: 10.3390/molecules29092103.
Rezapour M, Biel B
ACS Appl Electron Mater. 2024; 6(2):1244-1251.
PMID: 38435805
PMC: 10902847.
DOI: 10.1021/acsaelm.3c01607.
Yang G, Yang X, Li Z, Huang H, Lin J
RSC Adv. 2023; 13(40):27792-27800.
PMID: 37736563
PMC: 10509781.
DOI: 10.1039/d3ra05251f.
Hou Y, Ren K, Wei Y, Yang D, Cui Z, Wang K
Molecules. 2023; 28(10).
PMID: 37241918
PMC: 10224208.
DOI: 10.3390/molecules28104178.
Ajeel F, Ben Ahmed A
J Mol Model. 2023; 29(5):145.
PMID: 37067639
DOI: 10.1007/s00894-023-05545-0.
Structural, Electronic, and Magnetic Characteristics of Graphitic Carbon Nitride Nanoribbons and Their Applications in Spintronics.
Rezapour M
J Phys Chem C Nanomater Interfaces. 2022; 126(38):16429-16436.
PMID: 36203495
PMC: 9527752.
DOI: 10.1021/acs.jpcc.2c04691.
Ultrahigh conductivity of graphene nanoribbons doped with ordered nitrogen.
Li X, Yan W, Rao J, Liu D, Zhang X, Cao X
Nanoscale Adv. 2022; 1(11):4359-4364.
PMID: 36134412
PMC: 9417508.
DOI: 10.1039/c9na00458k.
Modifying spin current filtering and magnetoresistance in a molecular spintronic device.
Zhao G, Li L, Wang Y, Stroppa A, Zhang J, Ren W
RSC Adv. 2022; 8(72):41587-41593.
PMID: 35559333
PMC: 9092355.
DOI: 10.1039/c8ra07343k.
Multi-Functional Properties of MWCNT/PVA Buckypapers Fabricated by Vacuum Filtration Combined with Hot Press: Thermal, Electrical and Electromagnetic Shielding.
Cao L, Liu Y, Wang J, Pan Y, Zhang Y, Wang N
Nanomaterials (Basel). 2020; 10(12).
PMID: 33327367
PMC: 7764874.
DOI: 10.3390/nano10122503.
Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance.
Ramezani Akbarabadi S, Soleimani H, Golsanamlou Z, Bagheri Tagani M
Sci Rep. 2020; 10(1):10922.
PMID: 32616835
PMC: 7331582.
DOI: 10.1038/s41598-020-67964-w.
Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
Javan M, Jorjani R, Soltani A
J Mol Model. 2020; 26(4):64.
PMID: 32125548
DOI: 10.1007/s00894-020-4307-x.
Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons.
Fischer M, de Sousa L, Castro L, Ribeiro Jr L, de Sousa Jr R, E Silva G
Sci Rep. 2019; 9(1):17990.
PMID: 31784579
PMC: 6884564.
DOI: 10.1038/s41598-019-54319-3.
Highly Efficient Hybrid Ni/Nitrogenated Graphene Electrocatalysts for Hydrogen Evolution Reaction.
Gomez M, Loiacono A, Perez L, Franceschini E, Lacconi G
ACS Omega. 2019; 4(1):2206-2216.
PMID: 31459465
PMC: 6648461.
DOI: 10.1021/acsomega.8b02895.
Atomically defined angstrom-scale all-carbon junctions.
Tan Z, Zhang D, Tian H, Wu Q, Hou S, Pi J
Nat Commun. 2019; 10(1):1748.
PMID: 30988310
PMC: 6465289.
DOI: 10.1038/s41467-019-09793-8.
Bipolaron Dynamics in Graphene Nanoribbons.
Silva G, Junior L, Pereira Junior M, Fonseca A, de Sousa Junior R, E Silva G
Sci Rep. 2019; 9(1):2909.
PMID: 30814607
PMC: 6393677.
DOI: 10.1038/s41598-019-39774-2.
Effect of the Channel Length on the Transport Characteristics of Transistors Based on Boron-Doped Graphene Ribbons.
Marconcini P, Cresti A, Roche S
Materials (Basel). 2018; 11(5).
PMID: 29693612
PMC: 5978044.
DOI: 10.3390/ma11050667.
Multiple heteroatom substitution to graphene nanoribbon.
Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J
Sci Adv. 2018; 4(4):eaar7181.
PMID: 29662955
PMC: 5898832.
DOI: 10.1126/sciadv.aar7181.
Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.
Senturk A, Oktem A, Konukman A
J Mol Model. 2017; 23(8):247.
PMID: 28766111
DOI: 10.1007/s00894-017-3415-8.
Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons.
Zou F, Zhu L, Yao K
Sci Rep. 2015; 5:15966.
PMID: 26514646
PMC: 4626841.
DOI: 10.1038/srep15966.
Atomically controlled substitutional boron-doping of graphene nanoribbons.
Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A, Spijker P
Nat Commun. 2015; 6:8098.
PMID: 26302943
PMC: 4560828.
DOI: 10.1038/ncomms9098.