» Articles » PMID: 29662955

Multiple Heteroatom Substitution to Graphene Nanoribbon

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2018 Apr 18
PMID 29662955
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Substituting heteroatoms into nanostructured graphene elements, such as graphene nanoribbons, offers the possibility for atomic engineering of electronic properties. To characterize these substitutions, functionalized atomic force microscopy (AFM)-a tool to directly resolve chemical structures-is one of the most promising tools, yet the chemical analysis of heteroatoms has been rarely performed. We synthesized multiple heteroatom-substituted graphene nanoribbons and showed that AFM can directly resolve elemental differences and can be correlated to the van der Waals radii, as well as the modulated local electron density caused by the substitution. This elemental-sensitive measurement takes an important step in the analysis of functionalized two-dimensional carbon materials.

Citing Articles

On-Surface Synthesis and Characterization of Radical Spins in Kagome Graphene.

Pawlak R, Anindya K, Chahib O, Liu J, Hiret P, Marot L ACS Nano. 2025; 19(4):4768-4777.

PMID: 39793973 PMC: 11803911. DOI: 10.1021/acsnano.4c15519.


Preferential graphitic-nitrogen formation in pyridine-extended graphene nanoribbons.

Bassi N, Xu X, Xiang F, Krane N, Pignedoli C, Narita A Commun Chem. 2024; 7(1):274.

PMID: 39572756 PMC: 11582605. DOI: 10.1038/s42004-024-01344-7.


Surface Chemistry of a Halogenated Borazine: From Supramolecular Assemblies to a Random Covalent BN-Substituted Carbon Network.

Sena Tomekce B, Cuxart M, Caputo L, Poletto D, Charlier J, Bonifazi D Chemistry. 2024; 30(69):e202402492.

PMID: 39243206 PMC: 11632406. DOI: 10.1002/chem.202402492.


Deposition temperature-mediated growth of helically shaped polymers and chevron-type graphene nanoribbons from a fluorinated precursor.

Teeter J, Sarker M, Lu W, Tao C, Baddorf A, Huang J Commun Chem. 2024; 7(1):193.

PMID: 39217236 PMC: 11366011. DOI: 10.1038/s42004-024-01253-9.


Heavy Heterodendralenes: Structure and Reactivity of Phosphabora[3]dendralenes.

Zarkina V, Nichol G, Cowley M J Am Chem Soc. 2024; 146(34):23680-23685.

PMID: 39141774 PMC: 11363017. DOI: 10.1021/jacs.4c07850.


References
1.
Jelinek P . High resolution SPM imaging of organic molecules with functionalized tips. J Phys Condens Matter. 2017; 29(34):343002. DOI: 10.1088/1361-648X/aa76c7. View

2.
Moll N, Schuler B, Kawai S, Xu F, Peng L, Orita A . Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 2014; 14(11):6127-31. DOI: 10.1021/nl502113z. View

3.
Pavlicek N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D . Synthesis and characterization of triangulene. Nat Nanotechnol. 2017; 12(4):308-311. DOI: 10.1038/nnano.2016.305. View

4.
Kawai S, Foster A, Bjorkman T, Nowakowska S, Bjork J, Canova F . Van der Waals interactions and the limits of isolated atom models at interfaces. Nat Commun. 2016; 7:11559. PMC: 4869171. DOI: 10.1038/ncomms11559. View

5.
Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed W . Organic structure determination using atomic-resolution scanning probe microscopy. Nat Chem. 2010; 2(10):821-5. DOI: 10.1038/nchem.765. View