» Articles » PMID: 19332674

Genomewide Identification of Genetic Determinants of Antimicrobial Drug Resistance in Pseudomonas Aeruginosa

Overview
Specialty Pharmacology
Date 2009 Apr 1
PMID 19332674
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

The emergence of antimicrobial drug resistance is of enormous public concern due to the increased risk of delayed treatment of infections, the increased length of hospital stays, the substantial increase in the cost of care, and the high risk of fatal outcomes. A prerequisite for the development of effective therapy alternatives is a detailed understanding of the diversity of bacterial mechanisms that underlie drug resistance, especially for problematic gram-negative bacteria such as Pseudomonas aeruginosa. This pathogen has impressive chromosomally encoded mechanisms of intrinsic resistance, as well as the potential to mutate, gaining resistance to current antibiotics. In this study we have screened the comprehensive nonredundant Harvard PA14 library for P. aeruginosa mutants that exhibited either increased or decreased resistance against 19 antibiotics commonly used in the clinic. This approach identified several genes whose inactivation sensitized the bacteria to a broad spectrum of different antimicrobials and uncovered novel genetic determinants of resistance to various classes of antibiotics. Knowledge of the enhancement of bacterial susceptibility to existing antibiotics and of novel resistance markers or modifiers of resistance expression may lay the foundation for effective therapy alternatives and will be the basis for the development of new strategies in the control of problematic multiresistant gram-negative bacteria.

Citing Articles

A universal and wide-range cytosine base editor via domain-inlaid and fidelity-optimized CRISPR-FrCas9.

Hu L, Han J, Wang H, Cheng Z, Lv C, Liu D Nat Commun. 2025; 16(1):1260.

PMID: 39893181 PMC: 11787337. DOI: 10.1038/s41467-025-56655-7.


Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants.

Parab L, Romeyer Dherbey J, Rivera N, Schwarz M, Gallie J, Bertels F PLoS Biol. 2025; 23(1):e3002952.

PMID: 39841243 PMC: 11753469. DOI: 10.1371/journal.pbio.3002952.


Serotype switching in Pseudomonas aeruginosa ST111 enhances adhesion and virulence.

Anbo M, Lubna M, Moustafa D, Paiva T, Serioli L, Zor K PLoS Pathog. 2024; 20(12):e1012221.

PMID: 39621751 PMC: 11637443. DOI: 10.1371/journal.ppat.1012221.


Molecular characterization of clinically isolated with varying resistance to ceftazidime-avibactam and ceftolozane-tazobactam collected as a part of the ATLAS global surveillance program from 2020 to 2021.

Li H, Oliver A, Shields R, Kamat S, Stone G, Estabrook M Antimicrob Agents Chemother. 2024; 68(10):e0067024.

PMID: 39254297 PMC: 11459925. DOI: 10.1128/aac.00670-24.


Keeping up with the pathogens: improved antimicrobial resistance detection and prediction from Pseudomonas aeruginosa genomes.

Madden D, Baird T, Bell S, McCarthy K, Price E, Sarovich D Genome Med. 2024; 16(1):78.

PMID: 38849863 PMC: 11157771. DOI: 10.1186/s13073-024-01346-z.


References
1.
Liberati N, Urbach J, Miyata S, Lee D, Drenkard E, Wu G . An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 2006; 103(8):2833-8. PMC: 1413827. DOI: 10.1073/pnas.0511100103. View

2.
Pirnay J, De Vos D, Mossialos D, Vanderkelen A, Cornelis P, Zizi M . Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ Microbiol. 2003; 4(12):872-82. DOI: 10.1046/j.1462-2920.2002.00281.x. View

3.
Jacobs M, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S . Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2003; 100(24):14339-44. PMC: 283593. DOI: 10.1073/pnas.2036282100. View

4.
Cheong H, Kang C, Wi Y, Kim E, Lee J, Ko K . Clinical significance and predictors of community-onset Pseudomonas aeruginosa bacteremia. Am J Med. 2008; 121(8):709-14. DOI: 10.1016/j.amjmed.2008.03.034. View

5.
Kadurugamuwa J, Lam J, Beveridge T . Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob Agents Chemother. 1993; 37(4):715-21. PMC: 187740. DOI: 10.1128/AAC.37.4.715. View