» Articles » PMID: 19295136

Current Tools for the Identification of MiRNA Genes and Their Targets

Overview
Specialty Biochemistry
Date 2009 Mar 20
PMID 19295136
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

The discovery of microRNAs (miRNAs), almost 10 years ago, changed dramatically our perspective on eukaryotic gene expression regulation. However, the broad and important functions of these regulators are only now becoming apparent. The expansion of our catalogue of miRNA genes and the identification of the genes they regulate owe much to the development of sophisticated computational tools that have helped either to focus or interpret experimental assays. In this article, we review the methods for miRNA gene finding and target identification that have been proposed in the last few years. We identify some problems that current approaches have not yet been able to overcome and we offer some perspectives on the next generation of computational methods.

Citing Articles

pmiRScan: a LightGBM based method for prediction of animal pre-miRNAs.

Venkatesan A, Basak J, Bahadur R Funct Integr Genomics. 2025; 25(1):9.

PMID: 39786653 DOI: 10.1007/s10142-025-01527-y.


Prediction of miRNAs and diseases association based on sparse autoencoder and MLP.

Sun S, Zhou B, Liu S, Xiu Y, Bilal A, Long H Front Genet. 2024; 15:1369811.

PMID: 38873111 PMC: 11169787. DOI: 10.3389/fgene.2024.1369811.


Plant-Derived Exosomes as Novel Nanotherapeutics Contrive Glycolysis Reprogramming-Mediated Angiogenesis for Diabetic Ulcer Healing.

Tan M, Liu Y, Xu Y, Yan G, Zhou N, Chen H Biomater Res. 2024; 28:0035.

PMID: 38840655 PMC: 11151174. DOI: 10.34133/bmr.0035.


Research progress and perspectives of noncoding RNAs in adrenocortical carcinoma: A review.

Xu C, Xu P, Zhang J, He S, Hua T, Huang A Medicine (Baltimore). 2024; 103(4):e36908.

PMID: 38277554 PMC: 10817030. DOI: 10.1097/MD.0000000000036908.


BAP31-Mediated miR-206/133b Cluster Promotes Transendothelial Migration and Metastasis of Colorectal Cancer.

Zhang Q, Wang C, Wu Y, Liu J, Wang T, Wang B Int J Mol Sci. 2023; 24(23).

PMID: 38069061 PMC: 10706076. DOI: 10.3390/ijms242316740.


References
1.
Friedlander M, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S . Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008; 26(4):407-15. DOI: 10.1038/nbt1394. View

2.
Thadani R, Tammi M . MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics. 2007; 7 Suppl 5:S20. PMC: 1764477. DOI: 10.1186/1471-2105-7-S5-S20. View

3.
Hammell M, Long D, Zhang L, Lee A, Carmack C, Han M . mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods. 2009; 5(9):813-9. PMC: 3092588. DOI: 10.1038/nmeth.1247. View

4.
Borchert G, Lanier W, Davidson B . RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006; 13(12):1097-101. DOI: 10.1038/nsmb1167. View

5.
Krek A, Grun D, Poy M, Wolf R, Rosenberg L, Epstein E . Combinatorial microRNA target predictions. Nat Genet. 2005; 37(5):495-500. DOI: 10.1038/ng1536. View