» Articles » PMID: 19282969

A Fine-structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces Cerevisiae

Overview
Journal PLoS Genet
Specialty Genetics
Date 2009 Mar 14
PMID 19282969
Citations 74
Authors
Affiliations
Soon will be listed here.
Abstract

Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle.

Citing Articles

The dynamics of loss of heterozygosity events in genomes.

Dutta A, Schacherer J EMBO Rep. 2025; 26(3):602-612.

PMID: 39747660 PMC: 11811284. DOI: 10.1038/s44319-024-00353-w.


A chromosome-scale assembly reveals chromosomal aberrations and exchanges generating genetic diversity in Coffea arabica germplasm.

Scalabrin S, Magris G, Liva M, Vitulo N, Vidotto M, Scaglione D Nat Commun. 2024; 15(1):463.

PMID: 38263403 PMC: 10805892. DOI: 10.1038/s41467-023-44449-8.


Upper Bound on the Mutational Burden Imposed by a CRISPR-Cas9 Gene-Drive Element.

Overton M, Guy S, Chen X, Martsul A, Carolino K, Akbari O bioRxiv. 2023; .

PMID: 38076841 PMC: 10705488. DOI: 10.1101/2023.11.28.569142.


Timing of Chromosome DNA Integration throughout the Yeast Cell Cycle.

Tosato V, Rossi B, Sims J, Bruschi C Biomolecules. 2023; 13(4).

PMID: 37189362 PMC: 10135612. DOI: 10.3390/biom13040614.


Exploring impact of recombination landscapes on breeding outcomes.

Epstein R, Sajai N, Zelkowski M, Zhou A, Robbins K, Pawlowski W Proc Natl Acad Sci U S A. 2023; 120(14):e2205785119.

PMID: 36972450 PMC: 10083619. DOI: 10.1073/pnas.2205785119.


References
1.
Cromie G, Hyppa R, Taylor A, Zakharyevich K, Hunter N, Smith G . Single Holliday junctions are intermediates of meiotic recombination. Cell. 2006; 127(6):1167-78. PMC: 2803030. DOI: 10.1016/j.cell.2006.09.050. View

2.
Wei W, McCusker J, Hyman R, Jones T, Ning Y, Cao Z . Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A. 2007; 104(31):12825-30. PMC: 1933262. DOI: 10.1073/pnas.0701291104. View

3.
Paques F, Haber J . Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999; 63(2):349-404. PMC: 98970. DOI: 10.1128/MMBR.63.2.349-404.1999. View

4.
Strathern J, Weinstock K, Higgins D, McGill C . A novel recombinator in yeast based on gene II protein from bacteriophage f1. Genetics. 1991; 127(1):61-73. PMC: 1204313. DOI: 10.1093/genetics/127.1.61. View

5.
Bishop D, Kolodner R . Repair of heteroduplex plasmid DNA after transformation into Saccharomyces cerevisiae. Mol Cell Biol. 1986; 6(10):3401-9. PMC: 367087. DOI: 10.1128/mcb.6.10.3401-3409.1986. View