Jia B, Jussila A, Kern C, Zhu Q, Ren B
Nat Biotechnol. 2023; 41(7):1004-1017.
PMID: 36593410
PMC: 10344783.
DOI: 10.1038/s41587-022-01568-9.
Jinks-Robertson S, Petes T
Curr Opin Genet Dev. 2021; 71:78-85.
PMID: 34311384
PMC: 8671248.
DOI: 10.1016/j.gde.2021.07.002.
Smith M, Bryant E, Joseph F, Rothstein R
Mol Biol Cell. 2019; 30(21):2620-2625.
PMID: 31483739
PMC: 6761769.
DOI: 10.1091/mbc.E19-08-0469.
Shodhan A, Medhi D, Lichten M
G3 (Bethesda). 2019; 9(5):1647-1654.
PMID: 30902890
PMC: 6505156.
DOI: 10.1534/g3.119.400150.
Zhang K, Zheng D, Sui Y, Qi L, Petes T
Nucleic Acids Res. 2019; 47(7):3521-3535.
PMID: 30668788
PMC: 6468167.
DOI: 10.1093/nar/gkz027.
High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast.
Yin Y, Dominska M, Yim E, Petes T
Elife. 2017; 6.
PMID: 28714850
PMC: 5531827.
DOI: 10.7554/eLife.28069.
Properties of Mitotic and Meiotic Recombination in the Tandemly-Repeated Gene Cluster in the Yeast .
Zhao Y, Dominska M, Petrova A, Bagshaw H, Kokoska R, Petes T
Genetics. 2017; 206(2):785-800.
PMID: 28381587
PMC: 5499186.
DOI: 10.1534/genetics.117.201285.
Noncanonical views of homology-directed DNA repair.
Verma P, Greenberg R
Genes Dev. 2016; 30(10):1138-54.
PMID: 27222516
PMC: 4888836.
DOI: 10.1101/gad.280545.116.
Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae.
Symington L, Rothstein R, Lisby M
Genetics. 2014; 198(3):795-835.
PMID: 25381364
PMC: 4224172.
DOI: 10.1534/genetics.114.166140.
The Rate and Tract Length of Gene Conversion between Duplicated Genes.
Mansai S, Kado T, Innan H
Genes (Basel). 2014; 2(2):313-31.
PMID: 24710193
PMC: 3924818.
DOI: 10.3390/genes2020313.
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.
Yin Y, Petes T
PLoS Genet. 2013; 9(10):e1003894.
PMID: 24204306
PMC: 3814309.
DOI: 10.1371/journal.pgen.1003894.
The origin of a centromere effect on mitotic recombination : A study in the fission yeast Schizosaccharomyces pombe.
Minet M, Grossenbacher-Grunder A, Thuriaux P
Curr Genet. 2013; 2(1):53-60.
PMID: 24189723
DOI: 10.1007/BF00445694.
Mitotic versus meiotic recombination in Saccharomyces cerevisiae.
Malone R, Golin J, Esposito M
Curr Genet. 2013; 1(3):241-8.
PMID: 24189665
DOI: 10.1007/BF00390950.
Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae.
Montelone B, Prakash S, Prakash L
Curr Genet. 2013; 4(3):223-32.
PMID: 24185997
DOI: 10.1007/BF00420503.
Recombination and its roles in DNA repair, cellular immortalization and cancer.
Shammas M, Shmookler Reis R
Age (Omaha). 2013; 22(2):71-88.
PMID: 23604399
PMC: 3455241.
DOI: 10.1007/s11357-999-0009-0.
Tandem repeats derived from centromeric retrotransposons.
Sharma A, Wolfgruber T, Presting G
BMC Genomics. 2013; 14:142.
PMID: 23452340
PMC: 3648361.
DOI: 10.1186/1471-2164-14-142.
Nonrandom distribution of interhomolog recombination events induced by breakage of a dicentric chromosome in Saccharomyces cerevisiae.
Song W, Gawel M, Dominska M, Greenwell P, Hazkani-Covo E, Bloom K
Genetics. 2013; 194(1):69-80.
PMID: 23410835
PMC: 3632482.
DOI: 10.1534/genetics.113.150144.
Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis.
Burkovics P, Sebesta M, Sisakova A, Plault N, Szukacsov V, Robert T
EMBO J. 2013; 32(5):742-55.
PMID: 23395907
PMC: 3594751.
DOI: 10.1038/emboj.2013.9.
Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA.
George C, Alani E
Crit Rev Biochem Mol Biol. 2012; 47(3):297-313.
PMID: 22494239
PMC: 3337352.
DOI: 10.3109/10409238.2012.675644.
High-resolution genome-wide analysis of irradiated (UV and γ-rays) diploid yeast cells reveals a high frequency of genomic loss of heterozygosity (LOH) events.
St Charles J, Hazkani-Covo E, Yin Y, Andersen S, Dietrich F, Greenwell P
Genetics. 2012; 190(4):1267-84.
PMID: 22267500
PMC: 3316642.
DOI: 10.1534/genetics.111.137927.