» Articles » PMID: 19187533

Structural Studies of the Enterococcus Faecalis SufU [Fe-S] Cluster Protein

Overview
Journal BMC Biochem
Publisher Biomed Central
Specialty Biochemistry
Date 2009 Feb 4
PMID 19187533
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein.

Results: BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed.

Conclusion: The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested as a possible candidate for interaction with other factors and/or regulators.

Citing Articles

A molecular comparison of [Fe-S] cluster-based homeostasis in and .

Lo Sciuto A, DAngelo F, Spinnato M, Garcia P, Genah S, Matteo C mBio. 2024; 15(11):e0120624.

PMID: 39360836 PMC: 11559095. DOI: 10.1128/mbio.01206-24.


The Fe-S cluster biosynthesis in is essential for anaerobic growth and gastrointestinal colonization.

Xu L, Wu Y, Yang X, Pang X, Wu Y, Li X Gut Microbes. 2024; 16(1):2359665.

PMID: 38831611 PMC: 11152105. DOI: 10.1080/19490976.2024.2359665.


Vancomycin-variable enterococci in sheep and cattle isolates and whole-genome sequencing analysis of isolates harboring and genes.

Onaran Acar B, Cengiz G, Goncuoglu M Iran J Vet Res. 2024; 24(3):182-192.

PMID: 38269016 PMC: 10804430. DOI: 10.22099/IJVR.2023.47465.6855.


Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis.

Fujishiro T, Nakamura R, Kunichika K, Takahashi Y Biophys Physicobiol. 2022; 19:1-18.

PMID: 35377584 PMC: 8918507. DOI: 10.2142/biophysico.bppb-v19.0001.


Lacking Is Viable, but Displays Major Defects in Growth, Stress Tolerance Responses and Biofilm Formation.

Ellepola K, Huang X, Riley R, Bitoun J, Wen Z Front Microbiol. 2021; 12:671533.

PMID: 34248879 PMC: 8264796. DOI: 10.3389/fmicb.2021.671533.


References
1.
Nachin L, Loiseau L, Expert D, Barras F . SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J. 2003; 22(3):427-37. PMC: 140745. DOI: 10.1093/emboj/cdg061. View

2.
Takahashi Y, Tokumoto U . A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem. 2002; 277(32):28380-3. DOI: 10.1074/jbc.C200365200. View

3.
Wada K, Hasegawa Y, Gong Z, Minami Y, Fukuyama K, Takahashi Y . Crystal structure of Escherichia coli SufA involved in biosynthesis of iron-sulfur clusters: implications for a functional dimer. FEBS Lett. 2005; 579(29):6543-8. DOI: 10.1016/j.febslet.2005.10.046. View

4.
Mansy S, Cowan J . Iron-sulfur cluster biosynthesis: toward an understanding of cellular machinery and molecular mechanism. Acc Chem Res. 2004; 37(9):719-25. DOI: 10.1021/ar0301781. View

5.
Frazzon J, Dean D . Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr Opin Chem Biol. 2003; 7(2):166-73. DOI: 10.1016/s1367-5931(03)00021-8. View