» Articles » PMID: 19165552

Friedreich's Ataxia: from the (GAA)n Repeat Mediated Silencing to New Promising Molecules for Therapy

Overview
Journal Cerebellum
Publisher Springer
Specialty Neurology
Date 2009 Jan 24
PMID 19165552
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Friedreich's ataxia (FRDA) is a neurodegenerative disease due to a pathological expansion of a GAA triplet repeat in the first intron of the FXN gene encoding for the mitochondrial protein frataxin. The expansion is responsible for most cases of FRDA through the formation of a nonusual B-DNA structure and heterochromatin conformation that determine a direct transcriptional silencing and the subsequent reduction in frataxin expression. Among other functions, frataxin is an iron chaperone central for the assembly of iron-sulfur clusters in mitochondria; its reduction is associated with iron accumulation in mitochondria, increased cellular sensitivity to oxidative stress and cell damage. There is, nowadays, no effective therapy for FRDA and current therapeutic strategies mainly act to slow down the consequences of frataxin deficiency. Therefore, drugs that are able to increase the amount of frataxin are excellent candidates for a rational approach to FRDA therapy. Recently, several drugs have been assessed for their ability to increase the amount of cellular frataxin, including human recombinant erythropoietin, histone deacetylase inhibitors, and the PPAR-gamma agonists.

Citing Articles

DNA Base Damage Repair Crosstalks with Chromatin Structures to Contract Expanded GAA Repeats in Friedreich's Ataxia.

Lai Y, Diaz N, Armbrister R, Agoulnik I, Liu Y Biomolecules. 2024; 14(7).

PMID: 39062522 PMC: 11274795. DOI: 10.3390/biom14070809.


Emerging antioxidant therapies in Friedreich's ataxia.

Edzeamey F, Ramchunder Z, Pourzand C, Anjomani Virmouni S Front Pharmacol. 2024; 15:1359618.

PMID: 38379897 PMC: 10876797. DOI: 10.3389/fphar.2024.1359618.


A Drug Combination Rescues Frataxin-Dependent Neural and Cardiac Pathophysiology in FA Models.

Abeti R, Jasoliya M, Al-Mahdawi S, Pook M, Gonzalez-Robles C, Hui C Front Mol Biosci. 2022; 9:830650.

PMID: 35664670 PMC: 9160322. DOI: 10.3389/fmolb.2022.830650.


Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency.

Nygaard G, Szigetvari P, Grindheim A, Ruoff P, Martinez A, Haavik J J Pers Med. 2021; 11(11).

PMID: 34834538 PMC: 8625014. DOI: 10.3390/jpm11111186.


Analysis of Putative Epigenetic Regulatory Elements in the Genomic Locus.

Fernandez-Frias I, Perez-Luz S, Diaz-Nido J Int J Mol Sci. 2020; 21(10).

PMID: 32408537 PMC: 7279236. DOI: 10.3390/ijms21103410.


References
1.
Sakamoto N, Chastain P, Parniewski P, Ohshima K, Pandolfo M, Griffith J . Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell. 1999; 3(4):465-75. DOI: 10.1016/s1097-2765(00)80474-8. View

2.
Xenocostas A, Cheung W, Farrell F, Zakszewski C, Kelley M, Lutynski A . The pharmacokinetics of erythropoietin in the cerebrospinal fluid after intravenous administration of recombinant human erythropoietin. Eur J Clin Pharmacol. 2005; 61(3):189-95. DOI: 10.1007/s00228-005-0896-7. View

3.
Di Prospero N, Baker A, Jeffries N, Fischbeck K . Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 2007; 6(10):878-86. DOI: 10.1016/S1474-4422(07)70220-X. View

4.
Mootha V, Lindgren C, Eriksson K, Subramanian A, Sihag S, Lehar J . PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3):267-73. DOI: 10.1038/ng1180. View

5.
Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim S . Pioglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006; (4):CD006060. PMC: 8991699. DOI: 10.1002/14651858.CD006060.pub2. View