» Articles » PMID: 19100346

Outer Membrane Permeability and Antibiotic Resistance

Overview
Specialties Biochemistry
Biophysics
Date 2008 Dec 23
PMID 19100346
Citations 563
Authors
Affiliations
Soon will be listed here.
Abstract

To date most antibiotics are targeted at intracellular processes, and must be able to penetrate the bacterial cell envelope. In particular, the outer membrane of gram-negative bacteria provides a formidable barrier that must be overcome. There are essentially two pathways that antibiotics can take through the outer membrane: a lipid-mediated pathway for hydrophobic antibiotics, and general diffusion porins for hydrophilic antibiotics. The lipid and protein compositions of the outer membrane have a strong impact on the sensitivity of bacteria to many types of antibiotics, and drug resistance involving modifications of these macromolecules is common. This review will describe the molecular mechanisms for permeation of antibiotics through the outer membrane, and the strategies that bacteria have deployed to resist antibiotics by modifications of these pathways.

Citing Articles

Surface-mediated bacteriophage defense incurs fitness tradeoffs for interbacterial antagonism.

Tsai C, Wang F, Yang C, Yang L, Nguyen T, Chen Y EMBO J. 2025; .

PMID: 40065098 DOI: 10.1038/s44318-025-00406-3.


Antibacterial activity of the endophytic fungal extracts and synergistic effects of combinations of ethylenediaminetetraacetic acid (EDTA) against and .

Rosdee S, Wisessombat S, Tayeh M, Malakul R, Phanaksri T, Sianglum W PeerJ. 2025; 13:e19074.

PMID: 40061225 PMC: 11890036. DOI: 10.7717/peerj.19074.


Chemical linkers switch triglycerol detergents from bacterial protein purification to mild antibiotic amplification.

Singh A, Seewald M, Schade B, Zoister C, Haag R, Urner L Commun Chem. 2025; 8(1):70.

PMID: 40057629 PMC: 11890857. DOI: 10.1038/s42004-025-01477-3.


Exploring molecular mechanisms of drug resistance in bacteria and progressions in CRISPR/Cas9-based genome expurgation solutions.

Vivekanandan K, Kumar P, Jaysree R, Rajeshwari T Glob Med Genet. 2025; 12(2):100042.

PMID: 40051841 PMC: 11883354. DOI: 10.1016/j.gmg.2025.100042.


Sustainable nanophytosome-based therapies against multidrug-resistant Escherichia coli in urinary tract infections: an in Vitro and in vivo study.

Wen M, Abdelwahab I, Abozahra R, Abdelhamid S, Baraka K, Ahmed H J Nanobiotechnology. 2025; 23(1):174.

PMID: 40050888 PMC: 11883929. DOI: 10.1186/s12951-024-03006-1.


References
1.
Basle A, Rummel G, Storici P, Rosenbusch J, Schirmer T . Crystal structure of osmoporin OmpC from E. coli at 2.0 A. J Mol Biol. 2006; 362(5):933-42. DOI: 10.1016/j.jmb.2006.08.002. View

2.
Dela Vega A, Delcour A . Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol. 1996; 178(13):3715-21. PMC: 232627. DOI: 10.1128/jb.178.13.3715-3721.1996. View

3.
Sugawara E, Nestorovich E, Bezrukov S, Nikaido H . Pseudomonas aeruginosa porin OprF exists in two different conformations. J Biol Chem. 2006; 281(24):16220-9. PMC: 2846725. DOI: 10.1074/jbc.M600680200. View

4.
Dong C, Beis K, Nesper J, Brunkan-LaMontagne A, Clarke B, Whitfield C . Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature. 2006; 444(7116):226-9. PMC: 3315050. DOI: 10.1038/nature05267. View

5.
Vaara M . Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992; 56(3):395-411. PMC: 372877. DOI: 10.1128/mr.56.3.395-411.1992. View