Kim M, Ji S, Kim J, Min K, Jeong H, Youn J
Hum Brain Mapp. 2025; 46(2):e70136.
PMID: 39835664
PMC: 11748151.
DOI: 10.1002/hbm.70136.
Orenstein S, Fang Z, Shin H, van Zijl P, Li X, Sulam J
Mach Learn Clin Neuroimaging (2024). 2025; 15266():13-23.
PMID: 39776602
PMC: 11705005.
DOI: 10.1007/978-3-031-78761-4_2.
Cohen Z, Lau L, Ahmed M, Jack C, Liu C
Hum Brain Mapp. 2024; 45(9):e26688.
PMID: 38896001
PMC: 11187871.
DOI: 10.1002/hbm.26688.
Lee J, Ji S, Oh S
Magn Reson Med Sci. 2024; 23(3):291-306.
PMID: 38644201
PMC: 11234950.
DOI: 10.2463/mrms.rev.2024-0001.
Venkatesh V, Susan Mathew R, Yalavarthy P
MAGMA. 2024; 37(3):411-427.
PMID: 38598165
DOI: 10.1007/s10334-024-01158-7.
Incorporating information in deep learning models for quantitative susceptibility mapping via adaptive convolution.
Graf S, Wohlgemuth W, Deistung A
Front Neurosci. 2024; 18:1366165.
PMID: 38529264
PMC: 10962327.
DOI: 10.3389/fnins.2024.1366165.
Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-magnetic tissue properties study group.
Bilgic B, Costagli M, Chan K, Duyn J, Langkammer C, Lee J
Magn Reson Med. 2024; 91(5):1834-1862.
PMID: 38247051
PMC: 10950544.
DOI: 10.1002/mrm.30006.
A latent code based multi-variable modulation network for susceptibility mapping.
Zhou W, Xi J, Bao L
Front Neurosci. 2024; 17:1308829.
PMID: 38188033
PMC: 10771344.
DOI: 10.3389/fnins.2023.1308829.
mcTFI QSM MRI ABC/2 intracranial hemorrhage to noncontrast head CT volume measurement equivalence.
Ikram A, Sharma R, Selim M, Kim-Sun G, Shahraki T, Thomas A
J Neurol Sci. 2024; 456():122859.
PMID: 38171071
PMC: 10796171.
DOI: 10.1016/j.jns.2023.122859.
Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs.
Si W, Guo Y, Zhang Q, Zhang J, Wang Y, Feng Y
Front Neurosci. 2023; 17:1165446.
PMID: 37383103
PMC: 10293650.
DOI: 10.3389/fnins.2023.1165446.
DeepSTI: Towards tensor reconstruction using fewer orientations in susceptibility tensor imaging.
Fang Z, Lai K, van Zijl P, Li X, Sulam J
Med Image Anal. 2023; 87:102829.
PMID: 37146440
PMC: 10288385.
DOI: 10.1016/j.media.2023.102829.
Toward a realistic in silico abdominal phantom for QSM.
Silva J, Milovic C, Lambert M, Montalba C, Arrieta C, Irarrazaval P
Magn Reson Med. 2023; 89(6):2402-2418.
PMID: 36695213
PMC: 10952412.
DOI: 10.1002/mrm.29597.
[A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping].
Si W, Feng Y
Nan Fang Yi Ke Da Xue Xue Bao. 2023; 42(12):1799-1806.
PMID: 36651247
PMC: 9878415.
DOI: 10.12122/j.issn.1673-4254.2022.12.07.
Comparison of quantitative susceptibility mapping methods for iron-sensitive susceptibility imaging at 7T: An evaluation in healthy subjects and patients with Huntington's disease.
Yao J, Morrison M, Jakary A, Avadiappan S, Chen Y, Luitjens J
Neuroimage. 2022; 265:119788.
PMID: 36476567
PMC: 11588860.
DOI: 10.1016/j.neuroimage.2022.119788.
Feasibility of ultrashort echo time quantitative susceptibility mapping with a 3D cones trajectory in the human brain.
Jang H, Sedaghat S, Athertya J, Moazamian D, Carl M, Ma Y
Front Neurosci. 2022; 16:1033801.
PMID: 36419458
PMC: 9676465.
DOI: 10.3389/fnins.2022.1033801.
Region Expansion of Background Field Removal with Local Spherical Harmonics Approximation for Whole-brain Quantitative Susceptibility Mapping.
Shirai T, Sato R, Kawata Y, Bito Y, Ochi H
Magn Reson Med Sci. 2022; 22(4):497-514.
PMID: 36372397
PMC: 10552664.
DOI: 10.2463/mrms.mp.2021-0043.
Larmor frequency shift from magnetized cylinders with arbitrary orientation distribution.
Sandgaard A, Shemesh N, Kiselev V, Jespersen S
NMR Biomed. 2022; 36(3):e4859.
PMID: 36285793
PMC: 10078263.
DOI: 10.1002/nbm.4859.
BFRnet: A deep learning-based MR background field removal method for QSM of the brain containing significant pathological susceptibility sources.
Zhu X, Gao Y, Liu F, Crozier S, Sun H
Z Med Phys. 2022; 33(4):578-590.
PMID: 36064695
PMC: 10751722.
DOI: 10.1016/j.zemedi.2022.08.001.
Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3.
Marvel C, Chen L, Joyce M, Morgan O, Iannuzzelli K, LaConte S
Front Neurosci. 2022; 16:919765.
PMID: 36061587
PMC: 9433989.
DOI: 10.3389/fnins.2022.919765.
Quantitative susceptibility mapping as an imaging biomarker for Alzheimer's disease: The expectations and limitations.
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N
Front Neurosci. 2022; 16:938092.
PMID: 35992906
PMC: 9389285.
DOI: 10.3389/fnins.2022.938092.