6.
Greenberg S, Ziai W, Cordonnier C, Dowlatshahi D, Francis B, Goldstein J
. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke. 2022; 53(7):e282-e361.
DOI: 10.1161/STR.0000000000000407.
View
7.
Ni J, Auriel E, Martinez-Ramirez S, Keil B, Reed A, Fotiadis P
. Cortical localization of microbleeds in cerebral amyloid angiopathy: an ultra high-field 7T MRI study. J Alzheimers Dis. 2014; 43(4):1325-30.
PMC: 4386585.
DOI: 10.3233/JAD-140864.
View
8.
Wang D, Strugnell W, Cowin G, Doddrell D, Slaughter R
. Geometric distortion in clinical MRI systems Part I: evaluation using a 3D phantom. Magn Reson Imaging. 2004; 22(9):1211-21.
DOI: 10.1016/j.mri.2004.08.012.
View
9.
Reinsberg S, Doran S, Charles-Edwards E, Leach M
. A complete distortion correction for MR images: II. Rectification of static-field inhomogeneities by similarity-based profile mapping. Phys Med Biol. 2005; 50(11):2651-61.
DOI: 10.1088/0031-9155/50/11/014.
View
10.
Schweser F, Deistung A, Lehr B, Reichenbach J
. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys. 2010; 37(10):5165-78.
DOI: 10.1118/1.3481505.
View
11.
Linfante I, Llinas R, Caplan L, Warach S
. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke. 1999; 30(11):2263-7.
DOI: 10.1161/01.str.30.11.2263.
View
12.
Shmueli K, de Zwart J, van Gelderen P, Li T, Dodd S, Duyn J
. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med. 2009; 62(6):1510-22.
PMC: 4275127.
DOI: 10.1002/mrm.22135.
View
13.
Nandigam R, Viswanathan A, Delgado P, Skehan M, Smith E, Rosand J
. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol. 2008; 30(2):338-43.
PMC: 2760298.
DOI: 10.3174/ajnr.A1355.
View
14.
Lee K, Ellison B, Selim M, Long N, Filippidis A, Thomas A
. Quantitative susceptibility mapping improves cerebral microbleed detection relative to susceptibility-weighted images. J Neuroimaging. 2022; 33(1):138-146.
DOI: 10.1111/jon.13054.
View
15.
de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V
. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med. 2009; 63(1):194-206.
DOI: 10.1002/mrm.22187.
View
16.
Li J, Chang S, Liu T, Wang Q, Cui D, Chen X
. Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping. Magn Reson Med. 2012; 68(5):1563-9.
PMC: 3493252.
DOI: 10.1002/mrm.24135.
View
17.
Salmela M, Krishna S, Martin D, Khanipour Roshan S, McKinney A, Tore H
. All that bleeds is not black: susceptibility weighted imaging of intracranial hemorrhage and the effect of T1 signal. Clin Imaging. 2016; 41:69-72.
DOI: 10.1016/j.clinimag.2016.10.009.
View
18.
Broderick J, Brott T, Duldner J, Tomsick T, Huster G
. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993; 24(7):987-93.
DOI: 10.1161/01.str.24.7.987.
View
19.
Doran S, Charles-Edwards L, Reinsberg S, Leach M
. A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol. 2005; 50(7):1343-61.
DOI: 10.1088/0031-9155/50/7/001.
View
20.
Wen Y, Spincemaille P, Nguyen T, Cho J, Kovanlikaya I, Anderson J
. Multiecho complex total field inversion method (mcTFI) for improved signal modeling in quantitative susceptibility mapping. Magn Reson Med. 2021; 86(4):2165-2178.
DOI: 10.1002/mrm.28814.
View