Bhattacharya G, McMichael S, Lionadi I, Biglarbeigi P, Finlay D, Fernandez-Ibanez P
ACS Nano. 2024; .
PMID: 39072375
PMC: 11308922.
DOI: 10.1021/acsnano.4c03391.
Weng M, Tian T, Wang Z
Fundam Res. 2024; 3(1):50-56.
PMID: 38933573
PMC: 11197654.
DOI: 10.1016/j.fmre.2022.09.009.
Torkashvand Z, Shayeganfar F, Ramazani A
Micromachines (Basel). 2024; 15(2).
PMID: 38398905
PMC: 10890696.
DOI: 10.3390/mi15020175.
Shin D, Kim H, Kim S, Cheong H, Steeneken P, Joo C
iScience. 2023; 26(2):105958.
PMID: 36718371
PMC: 9883292.
DOI: 10.1016/j.isci.2023.105958.
Cai X, Xu L
Micromachines (Basel). 2022; 13(12).
PMID: 36557541
PMC: 9788434.
DOI: 10.3390/mi13122242.
Nanomechanical Resonators: Toward Atomic Scale.
Xu B, Zhang P, Zhu J, Liu Z, Eichler A, Zheng X
ACS Nano. 2022; 16(10):15545-15585.
PMID: 36054880
PMC: 9620412.
DOI: 10.1021/acsnano.2c01673.
Monolayer MXene Nanoelectromechanical Piezo-Resonators with 0.2 Zeptogram Mass Resolution.
Tan D, Cao X, Huang J, Peng Y, Zeng L, Guo Q
Adv Sci (Weinh). 2022; 9(22):e2201443.
PMID: 35619285
PMC: 9353497.
DOI: 10.1002/advs.202201443.
Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators.
Stassi S, Cooperstein I, Tortello M, Pirri C, Magdassi S, Ricciardi C
Nat Commun. 2021; 12(1):6080.
PMID: 34667168
PMC: 8526607.
DOI: 10.1038/s41467-021-26353-1.
Optical-Thermally Excited Graphene Resonant Mass Detection: A Molecular Dynamics Analysis.
Xiao X, Fan S, Li C, Liu Y
Nanomaterials (Basel). 2021; 11(8).
PMID: 34443758
PMC: 8400942.
DOI: 10.3390/nano11081924.
Integrated Resonant Micro/Nano Gravimetric Sensors for Bio/Chemical Detection in Air and Liquid.
Jia H, Xu P, Li X
Micromachines (Basel). 2021; 12(6).
PMID: 34073049
PMC: 8227694.
DOI: 10.3390/mi12060645.
Nonlinear vibration of a buckled/damaged BNC nanobeam transversally impacted by a high-speed C.
Shi J, Yang L, Shen J, Cai K
Sci Rep. 2021; 11(1):635.
PMID: 33436857
PMC: 7804857.
DOI: 10.1038/s41598-020-80202-7.
Casimir force and its effects on pull-in instability modelled using molecular dynamics simulations.
Sircar A, Patra P, Batra R
Proc Math Phys Eng Sci. 2020; 476(2242):20200311.
PMID: 33223935
PMC: 7655754.
DOI: 10.1098/rspa.2020.0311.
Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators.
Gruber G, Urgell C, Tavernarakis A, Stavrinadis A, Tepsic S, Magen C
Nano Lett. 2019; 19(10):6987-6992.
PMID: 31478676
PMC: 6788197.
DOI: 10.1021/acs.nanolett.9b02351.
Stress-Insensitive Resonant Graphene Mass Sensing via Frequency Ratio.
Xiao X, Fan S, Li C, Xing W
Sensors (Basel). 2019; 19(13).
PMID: 31324044
PMC: 6651828.
DOI: 10.3390/s19133027.
Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.
De Bonis S, Urgell C, Yang W, Samanta C, Noury A, Vergara-Cruz J
Nano Lett. 2018; 18(8):5324-5328.
PMID: 30062893
PMC: 6089494.
DOI: 10.1021/acs.nanolett.8b02437.
Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision.
Cai K, Yang L, Shi J, Qin Q
Sci Rep. 2018; 8(1):913.
PMID: 29343738
PMC: 5772456.
DOI: 10.1038/s41598-017-18789-7.
Pillared graphene as an ultra-high sensitivity mass sensor.
Duan K, Li L, Hu Y, Wang X
Sci Rep. 2017; 7(1):14012.
PMID: 29070861
PMC: 5656676.
DOI: 10.1038/s41598-017-14182-6.
A proposed method to measure weak magnetic field based on a hybrid optomechanical system.
Liu Z, Wang B, Kong C, Si L, Xiong H, Wu Y
Sci Rep. 2017; 7(1):12521.
PMID: 28970507
PMC: 5624905.
DOI: 10.1038/s41598-017-12639-2.
Electrophoresis assisted time-of-flow mass spectrometry using hollow nanomechanical resonators.
Chaudhari S, Chaudhari K, Kim S, Khan F, Lee J, Thundat T
Sci Rep. 2017; 7(1):3535.
PMID: 28615653
PMC: 5471201.
DOI: 10.1038/s41598-017-03846-y.
Weighing a single atom using a coupled plasmon-carbon nanotube system.
Li J, Zhu K
Sci Technol Adv Mater. 2016; 13(2):025006.
PMID: 27877484
PMC: 5090634.
DOI: 10.1088/1468-6996/13/2/025006.