» Articles » PMID: 19035644

Sesquiterpene Synthase from the Botrydial Biosynthetic Gene Cluster of the Phytopathogen Botrytis Cinerea

Overview
Journal ACS Chem Biol
Specialties Biochemistry
Biology
Date 2008 Nov 28
PMID 19035644
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

The fungus Botrytis cinerea is the causal agent of the economically important gray mold disease that affects more than 200 ornamental and agriculturally important plant species. B. cinerea is a necrotrophic plant pathogen that secretes nonspecific phytotoxins, including the sesquiterpene botrydial and the polyketide botcinic acid. The region surrounding the previously characterized BcBOT1 gene has now been identified as the botrydial biosynthetic gene cluster.Five genes including BcBOT1 and BcBOT2 were shown by quantitative reverse transcription-PCR to be co-regulated through the calcineurin signaling pathway. Inactivation of the BcBOT2 gene, encoding a putative sesquiterpene cyclase, abolished botrydial biosynthesis, which could be restored by in trans complementation.Inactivation of BcBOT2 also resulted in overproduction of botcinic acid that was observed to be strain-dependent. Recombinant BcBOT2 protein converted farnesyl diphosphate to the parent sesquiterpene of the botrydial biosynthetic pathway, the tricyclic alcohol presilphiperfolan-8beta-ol.

Citing Articles

Calcium Transport and Enrichment in Microorganisms: A Review.

Zhou H, Hu Y, Tang Z, Jiang Z, Huang J, Zhang T Foods. 2024; 13(22).

PMID: 39594028 PMC: 11593130. DOI: 10.3390/foods13223612.


Transcriptomic and functional analyses on a Botrytis cinerea multidrug-resistant (MDR) strain provides new insights into the potential molecular mechanisms of MDR and fitness.

Sofianos G, Piombo E, Dubey M, Karlsson M, Karaoglanidis G, Tzelepis G Mol Plant Pathol. 2024; 25(9):e70004.

PMID: 39244735 PMC: 11380696. DOI: 10.1111/mpp.70004.


Revealing Hidden Genes in : New Insights into Genes Involved in the Biosynthesis of Secondary Metabolites.

Suarez I, Collado I, Garrido C Int J Mol Sci. 2024; 25(11).

PMID: 38892087 PMC: 11173184. DOI: 10.3390/ijms25115900.


Unravelling the Function of the Sesquiterpene Cyclase STC3 in the Lifecycle of .

Coca-Ruiz V, Suarez I, Aleu J, Cantoral J, Gonzalez C, Garrido C Int J Mol Sci. 2024; 25(10).

PMID: 38791163 PMC: 11120764. DOI: 10.3390/ijms25105125.


Codon Optimization Enables the Geneticin Resistance Gene to Be Applied Efficiently to the Genetic Manipulation of the Plant Pathogenic Fungus .

Tang M, Wang Y, Wang K, Zhou Y, Zhao E, Zhang H Plants (Basel). 2024; 13(2).

PMID: 38276781 PMC: 10821057. DOI: 10.3390/plants13020324.


References
1.
Wang S, Tantillo D . Prediction of a new pathway to presilphiperfolanol. Org Lett. 2008; 10(21):4827-30. DOI: 10.1021/ol801898v. View

2.
Siewers V, Viaud M, Jimenez-Teja D, Collado I, Schulze Gronover C, Pradier J . Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact. 2005; 18(6):602-12. DOI: 10.1094/MPMI-18-0602. View

3.
Colmenares A, Aleu J, Duran-Patron R, Collado I, Hernandez-Galan R . The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol. 2002; 28(5):997-1005. DOI: 10.1023/a:1015209817830. View

4.
Collado I, Sanchez A, Hanson J . Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat Prod Rep. 2007; 24(4):674-86. DOI: 10.1039/b603085h. View

5.
Choquer M, Robin G, Le Pecheur P, Giraud C, Levis C, Viaud M . Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. FEMS Microbiol Lett. 2008; 289(2):225-32. DOI: 10.1111/j.1574-6968.2008.01388.x. View