Cribari M, Unger M, Unarta I, Ogorek A, Huang X, Martell J
J Am Chem Soc. 2023; 145(50):27380-27389.
PMID: 38051911
PMC: 11058326.
DOI: 10.1021/jacs.3c08291.
Kang B, Lax B, Wittrup K
Methods Mol Biol. 2022; 2491:29-62.
PMID: 35482183
DOI: 10.1007/978-1-0716-2285-8_2.
Teymennet-Ramirez K, Martinez-Morales F, Trejo-Hernandez M
Front Bioeng Biotechnol. 2022; 9:794742.
PMID: 35083204
PMC: 8784408.
DOI: 10.3389/fbioe.2021.794742.
Zhou Y, Wei W, Cui F, Yan Z, Sun Y, Ren J
Chem Sci. 2021; 11(41):11344-11350.
PMID: 34094377
PMC: 8162767.
DOI: 10.1039/d0sc03082a.
Prodanovic R, Ung W, Ilic durdic K, Fischer R, Weitz D, Ostafe R
Molecules. 2020; 25(10).
PMID: 32455903
PMC: 7287683.
DOI: 10.3390/molecules25102418.
Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display.
Konning D, Kolmar H
Microb Cell Fact. 2018; 17(1):32.
PMID: 29482656
PMC: 6389260.
DOI: 10.1186/s12934-018-0881-3.
Engineering Novel and Improved Biocatalysts by Cell Surface Display.
Smith M, Khera E, Wen F
Ind Eng Chem Res. 2017; 54(16):4021-4032.
PMID: 29056821
PMC: 5647830.
DOI: 10.1021/ie504071f.
High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
Chan H, Ma S, Tian J, Leong K
Nanoscale. 2017; 9(10):3485-3495.
PMID: 28239692
PMC: 5428077.
DOI: 10.1039/c6nr08224f.
Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.
Zhang K, Bhuripanyo K, Wang Y, Yin J
Methods Mol Biol. 2015; 1319:245-60.
PMID: 26060080
PMC: 4648535.
DOI: 10.1007/978-1-4939-2748-7_14.
Applications of Yeast Surface Display for Protein Engineering.
Cherf G, Cochran J
Methods Mol Biol. 2015; 1319:155-75.
PMID: 26060074
PMC: 4544684.
DOI: 10.1007/978-1-4939-2748-7_8.
Directed evolution of a yeast-displayed HIV-1 SOSIP gp140 spike protein toward improved expression and affinity for conformational antibodies.
Grimm S, Battles M, Ackerman M
PLoS One. 2015; 10(2):e0117227.
PMID: 25688555
PMC: 4331506.
DOI: 10.1371/journal.pone.0117227.
Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.
Ishii J, Yoshimoto N, Tatematsu K, Kuroda S, Ogino C, Fukuda H
PLoS One. 2012; 7(5):e37136.
PMID: 22623985
PMC: 3356411.
DOI: 10.1371/journal.pone.0037136.
A general strategy for the evolution of bond-forming enzymes using yeast display.
Chen I, Dorr B, Liu D
Proc Natl Acad Sci U S A. 2011; 108(28):11399-404.
PMID: 21697512
PMC: 3136257.
DOI: 10.1073/pnas.1101046108.
Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis.
Nannemann D, Birmingham W, Scism R, Bachmann B
Future Med Chem. 2011; 3(7):809-19.
PMID: 21644826
PMC: 3155183.
DOI: 10.4155/fmc.11.48.
Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL.
Dutta S, Gulla S, Chen T, Fire E, Grant R, Keating A
J Mol Biol. 2010; 398(5):747-62.
PMID: 20363230
PMC: 2896288.
DOI: 10.1016/j.jmb.2010.03.058.
Ultrahigh-throughput screening in drop-based microfluidics for directed evolution.
Agresti J, Antipov E, Abate A, Ahn K, Rowat A, Baret J
Proc Natl Acad Sci U S A. 2010; 107(9):4004-9.
PMID: 20142500
PMC: 2840095.
DOI: 10.1073/pnas.0910781107.
Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase.
Puthenveetil S, Liu D, White K, Thompson S, Ting A
J Am Chem Soc. 2009; 131(45):16430-8.
PMID: 19863063
PMC: 2799336.
DOI: 10.1021/ja904596f.
How a single-point mutation in horseradish peroxidase markedly enhances enantioselectivity.
Antipov E, Cho A, Klibanov A
J Am Chem Soc. 2009; 131(31):11155-60.
PMID: 19610634
PMC: 2743472.
DOI: 10.1021/ja903482u.