» Articles » PMID: 1900346

Structural Genes of Glutamate 1-semialdehyde Aminotransferase for Porphyrin Synthesis in a Cyanobacterium and Escherichia Coli

Overview
Journal Mol Gen Genet
Date 1991 Jan 1
PMID 1900346
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences.

Citing Articles

Ethylene-forming enzyme and bioethylene production.

Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L Biotechnol Biofuels. 2014; 7(1):33.

PMID: 24589138 PMC: 3946592. DOI: 10.1186/1754-6834-7-33.


The common origins of the pigments of life-early steps of chlorophyll biosynthesis.

Avissar Y, Moberg P Photosynth Res. 2013; 44(3):221-42.

PMID: 24307093 DOI: 10.1007/BF00048596.


Purification and Characterization of Glutamate 1-Semialdehyde Aminotransferase from Barley Expressed in Escherichia coli.

Berry-Lowe S, Grimm B, Smith M, Kannangara C Plant Physiol. 1992; 99(4):1597-603.

PMID: 16669079 PMC: 1080669. DOI: 10.1104/pp.99.4.1597.


Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus.

Smith M, Grimm B, Kannangara C, von Wettstein D Proc Natl Acad Sci U S A. 1991; 88(21):9775-9.

PMID: 11607231 PMC: 52803. DOI: 10.1073/pnas.88.21.9775.


Linkage map of Escherichia coli K-12, edition 10: the traditional map.

Berlyn M Microbiol Mol Biol Rev. 1998; 62(3):814-984.

PMID: 9729611 PMC: 98936. DOI: 10.1128/MMBR.62.3.814-984.1998.


References
1.
Drolet M, Peloquin L, Echelard Y, COUSINEAU L, SASARMAN A . Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12. Mol Gen Genet. 1989; 216(2-3):347-52. DOI: 10.1007/BF00334375. View

2.
Hoober J, Kahn A, Ash D, Gough S, Kannangara C . Biosynthesis of delta-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun. 1988; 53(1):11-25. DOI: 10.1007/BF02908411. View

3.
Huang D, Wang W, Gough S, Kannangara C . delta-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science. 1984; 225(4669):1482-4. DOI: 10.1126/science.6206568. View

4.
Grosjean H, Fiers W . Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene. 1982; 18(3):199-209. DOI: 10.1016/0378-1119(82)90157-3. View

5.
Avissar Y, Beale S . Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol. 1990; 172(3):1656-9. PMC: 208645. DOI: 10.1128/jb.172.3.1656-1659.1990. View