» Articles » PMID: 19001593

The EZ Diffusion Method: Too EZ?

Overview
Specialty Psychology
Date 2008 Nov 13
PMID 19001593
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The diffusion model (Ratcliff, 1978) for fast two-choice decisions has been successful in a number of domains. Wagenmakers, van der Maas, and Grasman (2007) proposed a new method for fitting the model to data ("EZ") that is simpler than the standard chisquare method (Ratcliff & Tuerlinckx, 2002). For an experimental condition, EZ can estimate parameter values for the main components of processing using only correct response times (RTs), their variance, and accuracy, not error RTs or the shapes of RT distributions. Wagenmakers et al. suggested that EZ produces accurate parameter estimates in cases in which the chi-square method would fail-specifically, experimental conditions with small numbers of observations or with accuracy near ceiling. In this article, I counter these claims and discuss EZ's limitations. Unlike the chi-square method, EZ is extremely sensitive to outlier RTs and is usually less efficient in recovering parameter values, and it can lead to errors in interpretation when the data do not meet its assumptions, when the number of observations in an experimental condition is small, or when accuracy in an experimental condition is high. The conclusion is that EZ can be useful in the exploration of parameter spaces, but it should not be used for meaningful estimates of parameter values or for assessing whether or not a model fits data.

Citing Articles

Sequential Effects on Reaction Time Distributions: Commonalities and Differences Across Paradigms.

Voormann A, Miller J J Cogn. 2024; 7(1):68.

PMID: 39246695 PMC: 11378712. DOI: 10.5334/joc.395.


Using Speed and Accuracy and the Simon Effect to Explore the Output Form of Inhibition of Return.

Redden R, Hilchey M, Aslam S, Ivanoff J, Klein R Vision (Basel). 2023; 7(1).

PMID: 36977305 PMC: 10056541. DOI: 10.3390/vision7010025.


Problems when fixing the response bias parameter z in drift diffusion analysis : A Commentary on Stafford et al. (2020).

Alexandrowicz R, Gula B Behav Res Methods. 2022; 55(1):168-175.

PMID: 35318590 PMC: 9918591. DOI: 10.3758/s13428-021-01786-0.


Discriminating memory disordered patients from controls using diffusion model parameters from recognition memory.

Ratcliff R, Scharre D, McKoon G J Exp Psychol Gen. 2021; 151(6):1377-1393.

PMID: 34735185 PMC: 9065216. DOI: 10.1037/xge0001133.


An Attention-Based Diffusion Model for Psychometric Analyses.

Boehm U, Marsman M, van der Maas H, Maris G Psychometrika. 2021; 86(4):938-972.

PMID: 34258714 PMC: 8636464. DOI: 10.1007/s11336-021-09783-0.


References
1.
Thapar A, Ratcliff R, McKoon G . A diffusion model analysis of the effects of aging on letter discrimination. Psychol Aging. 2003; 18(3):415-29. PMC: 1360152. DOI: 10.1037/0882-7974.18.3.415. View

2.
White C, Ratcliff R, Vasey M, McKoon G . Dysphoria and memory for emotional material: A diffusion-model analysis. Cogn Emot. 2009; 23(1):181-205. PMC: 2742433. DOI: 10.1080/02699930801976770. View

3.
Gomez P, Ratcliff R, Perea M . A model of the go/no-go task. J Exp Psychol Gen. 2007; 136(3):389-413. PMC: 2701630. DOI: 10.1037/0096-3445.136.3.389. View

4.
Smith P, Ratcliff R, Wolfgang B . Attention orienting and the time course of perceptual decisions: response time distributions with masked and unmasked displays. Vision Res. 2004; 44(12):1297-320. DOI: 10.1016/j.visres.2004.01.002. View

5.
Heathcote A, Brown S, Mewhort D . Quantile maximum likelihood estimation of response time distributions. Psychon Bull Rev. 2002; 9(2):394-401. DOI: 10.3758/bf03196299. View