» Articles » PMID: 18949495

Carbapenem-resistant Pseudomonas Aeruginosa: Factors Influencing Multidrug-resistant Acquisition in Non-critically Ill Patients

Overview
Publisher Springer
Date 2008 Oct 25
PMID 18949495
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

A cohort study was carried out on hospitalized adult non-critically ill patients (January 2003-December 2004) to identify factors associated with the acquisition of multidrug-resistant Pseudomonas aeruginosa (MDR-PA). A total of 246 non-critically patients were included, 162 (66%) who revealed MDR-PA in the first isolate and 84 (34%) who had carbapenem-resistant P. aeruginosa (CR-PA) isolates. Multivariate analysis identified nosocomial acquisition (odds ratio [OR] 2.7, 95% confidence interval [CI] 1.1-6.3), urinary catheter (OR 2.1, 95%CI 1.1-4.3), and the prior use of fluoroquinolones (OR 2.6, 95%CI 1.0-6.7) as independent risk factors associated with MDR-PA acquisition. Our results show that antibiotics, most notably, fluoroquinolones, may play a major role in the emergence of MDR-PA.

Citing Articles

Risk Factors and Clinical Characteristics of Pandrug-Resistant Pseudomonas aeruginosa.

Kamal S, Varshney K, Uayan D, Tenorio B, Pillay P, Sava S Cureus. 2024; 16(4):e58114.

PMID: 38738125 PMC: 11088816. DOI: 10.7759/cureus.58114.


Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology.

Fereshteh S, Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F PLoS One. 2023; 18(8):e0289609.

PMID: 37535697 PMC: 10399887. DOI: 10.1371/journal.pone.0289609.


Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients.

Diaz Caballero J, Wheatley R, Kapel N, Lopez-Causape C, Van der Schalk T, Quinn A Nat Commun. 2023; 14(1):4083.

PMID: 37438338 PMC: 10338428. DOI: 10.1038/s41467-023-39416-2.


Cheminformatics analysis of molecular datasets of transcription factors associated with quorum sensing in .

Victoria-Munoz F, Sanchez-Cruz N, Medina-Franco J, Lopez-Vallejo F RSC Adv. 2022; 12(11):6783-6790.

PMID: 35424595 PMC: 8981735. DOI: 10.1039/d1ra08352j.


A Pragmatic Machine Learning Model To Predict Carbapenem Resistance.

McGuire R, Yu S, Payne P, Lai A, Vazquez-Guillamet M, Kollef M Antimicrob Agents Chemother. 2021; 65(7):e0006321.

PMID: 33972243 PMC: 8218615. DOI: 10.1128/AAC.00063-21.


References
1.
Lodise T, Miller C, Graves J, Furuno J, McGregor J, Lomaestro B . Clinical prediction tool to identify patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk for multidrug resistance. Antimicrob Agents Chemother. 2006; 51(2):417-22. PMC: 1797724. DOI: 10.1128/AAC.00851-06. View

2.
Pena C, Guzman A, Suarez C, Dominguez M, Tubau F, Pujol M . Effects of carbapenem exposure on the risk for digestive tract carriage of intensive care unit-endemic carbapenem-resistant Pseudomonas aeruginosa strains in critically ill patients. Antimicrob Agents Chemother. 2007; 51(6):1967-71. PMC: 1891408. DOI: 10.1128/AAC.01483-06. View

3.
Falagas M, Kopterides P . Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J Hosp Infect. 2006; 64(1):7-15. DOI: 10.1016/j.jhin.2006.04.015. View

4.
Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A . Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005; 49(2):565-70. PMC: 547318. DOI: 10.1128/AAC.49.2.565-570.2005. View

5.
Aubert G, Pozzetto B, DORCHE G . Emergence of quinolone-imipenem cross-resistance in Pseudomonas aeruginosa after fluoroquinolone therapy. J Antimicrob Chemother. 1992; 29(3):307-12. DOI: 10.1093/jac/29.3.307. View