» Articles » PMID: 18940602

Structures of CaV2 Ca2+/CaM-IQ Domain Complexes Reveal Binding Modes That Underlie Calcium-dependent Inactivation and Facilitation

Overview
Journal Structure
Publisher Cell Press
Date 2008 Oct 23
PMID 18940602
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Calcium influx drives two opposing voltage-activated calcium channel (Ca(V)) self-modulatory processes: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Specific Ca(2+)/calmodulin (Ca(2+)/CaM) lobes produce CDI and CDF through interactions with the Ca(V)alpha(1) subunit IQ domain. Curiously, Ca(2+)/CaM lobe modulation polarity appears inverted between Ca(V)1s and Ca(V)2s. Here, we present crystal structures of Ca(V)2.1, Ca(V)2.2, and Ca(V)2.3 Ca(2+)/CaM-IQ domain complexes. All display binding orientations opposite to Ca(V)1.2 with a physical reversal of the CaM lobe positions relative to the IQ alpha-helix. Titration calorimetry reveals lobe competition for a high-affinity site common to Ca(V)1 and Ca(V)2 IQ domains that is occupied by the CDI lobe in the structures. Electrophysiological experiments demonstrate that the N-terminal Ca(V)2 Ca(2+)/C-lobe anchors affect CDF. Together, the data unveil the remarkable structural plasticity at the heart of Ca(V) feedback modulation and indicate that Ca(V)1 and Ca(V)2 IQ domains bear a dedicated CDF site that exchanges Ca(2+)/CaM lobe occupants.

Citing Articles

Calmodulin binding is required for calcium mediated TRPA1 desensitization.

Sanders J, Taiwo K, Adekanye G, Bali A, Zhang Y, Paulsen C bioRxiv. 2024; .

PMID: 39713425 PMC: 11661184. DOI: 10.1101/2024.12.11.627969.


Functions of TRPs in retinal tissue in physiological and pathological conditions.

do Nascimento T, Pereira-Figueiredo D, Veroneze L, Nascimento A, De Logu F, Nassini R Front Mol Neurosci. 2024; 17:1459083.

PMID: 39386050 PMC: 11461470. DOI: 10.3389/fnmol.2024.1459083.


Investigating the Impact of Electrostatic Interactions on Calmodulin Binding and Ca-Dependent Activation of the Calcium-Gated Potassium SK4 Channel.

Segura E, Zhao J, Broszczak M, Audet F, Sauve R, Parent L Int J Mol Sci. 2024; 25(8).

PMID: 38673845 PMC: 11050286. DOI: 10.3390/ijms25084255.


Active Zone Trafficking of CaV2/UNC-2 Channels Is Independent of β/CCB-1 and α2δ/UNC-36 Subunits.

Oh K, Xiong A, Choe J, Richmond J, Kim H J Neurosci. 2023; 43(28):5142-5157.

PMID: 37160370 PMC: 10343168. DOI: 10.1523/JNEUROSCI.2264-22.2023.


A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases.

Johnson S, Tsou W, Prifti M, Harris A, Todi S Front Mol Neurosci. 2022; 15:974167.

PMID: 36187346 PMC: 9515312. DOI: 10.3389/fnmol.2022.974167.


References
1.
Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L . Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci U S A. 1999; 96(5):2435-8. PMC: 26802. DOI: 10.1073/pnas.96.5.2435. View

2.
Peterson B, DeMaria C, Adelman J, Yue D . Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron. 1999; 22(3):549-58. DOI: 10.1016/s0896-6273(00)80709-6. View

3.
Lee A, Wong S, Gallagher D, Li B, Storm D, Scheuer T . Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature. 1999; 399(6732):155-9. DOI: 10.1038/20194. View

4.
Zuhlke R, Pitt G, Deisseroth K, Tsien R, Reuter H . Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999; 399(6732):159-62. DOI: 10.1038/20200. View

5.
Jurado L, Chockalingam P, Jarrett H . Apocalmodulin. Physiol Rev. 1999; 79(3):661-82. DOI: 10.1152/physrev.1999.79.3.661. View