» Articles » PMID: 18923076

Mouse ES Cells Express Endogenous ShRNAs, SiRNAs, and Other Microprocessor-independent, Dicer-dependent Small RNAs

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2008 Oct 17
PMID 18923076
Citations 497
Authors
Affiliations
Soon will be listed here.
Abstract

Canonical microRNAs (miRNAs) require two processing steps: the first by the Microprocessor, a complex of DGCR8 and Drosha, and the second by a complex of TRBP and Dicer. dgcr8Delta/Delta mouse embryonic stem cells (mESCs) have less severe phenotypes than dicer1Delta/Delta mESCs, suggesting a physiological role for Microprocessor-independent, Dicer-dependent small RNAs. To identify these small RNAs with unusual biogenesis, we performed high-throughput sequencing from wild-type, dgcr8Delta/Delta, and dicer1Delta/Delta mESCs. Several of the resulting DGCR8-independent, Dicer-dependent RNAs were noncanonical miRNAs. These derived from mirtrons and a newly identified subclass of miRNA precursors, which appears to be the endogenous counterpart of shRNAs. Our analyses also revealed endogenous siRNAs resulting from Dicer cleavage of long hairpins, the vast majority of which originated from one genomic locus with tandem, inverted short interspersed nuclear elements (SINEs). Our results extend the known diversity of mammalian small RNA-generating pathways and show that mammalian siRNAs exist in cell types other than oocytes.

Citing Articles

The functions and modifications of tRNA-derived small RNAs in cancer biology.

Saad A, Zhang K, Deng Q, Zhou J, Ge L, Wang H Cancer Metastasis Rev. 2025; 44(1):38.

PMID: 40072687 DOI: 10.1007/s10555-025-10254-6.


Natural compounds as regulators of miRNAs: exploring a new avenue for treating brain cancer.

Doghish A, El-Dakroury W, Abulsoud A, Abdelmaksoud N, Aly S, Elbadry A Naunyn Schmiedebergs Arch Pharmacol. 2025; .

PMID: 40047858 DOI: 10.1007/s00210-025-03934-1.


The miR-290 and miR-302 clusters are essential for reprogramming of fibroblasts to induced pluripotent stem cells.

Ye J, Boileau R, Parchem R, Judson-Torres R, Blelloch R Stem Cells. 2025; 43(2).

PMID: 40037390 PMC: 11879289. DOI: 10.1093/stmcls/sxae080.


The Role of MicroRNAs in Neurodegeneration: Insights from Huntington's Disease.

Mansour R, Shaker A, Abulsoud A, Mageed S, Ashraf A, Elsakka E Mol Neurobiol. 2025; .

PMID: 40009259 DOI: 10.1007/s12035-025-04750-7.


From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH.

Mansour R, Mageed S, Abulsoud A, Sayed G, Lutfy R, Awad F Funct Integr Genomics. 2025; 25(1):30.

PMID: 39888504 DOI: 10.1007/s10142-025-01544-x.


References
1.
Stark G, Kerr I, Williams B, Silverman R, Schreiber R . How cells respond to interferons. Annu Rev Biochem. 1998; 67:227-64. DOI: 10.1146/annurev.biochem.67.1.227. View

2.
Ruby J, Stark A, Johnston W, Kellis M, Bartel D, Lai E . Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 2007; 17(12):1850-64. PMC: 2099593. DOI: 10.1101/gr.6597907. View

3.
Denli A, Tops B, Plasterk R, Ketting R, Hannon G . Processing of primary microRNAs by the Microprocessor complex. Nature. 2004; 432(7014):231-5. DOI: 10.1038/nature03049. View

4.
Landthaler M, Yalcin A, Tuschl T . The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004; 14(23):2162-7. DOI: 10.1016/j.cub.2004.11.001. View

5.
Han J, Lee Y, Yeom K, Kim Y, Jin H, Kim V . The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004; 18(24):3016-27. PMC: 535913. DOI: 10.1101/gad.1262504. View