» Articles » PMID: 18852467

A Schiff Base Connectivity Switch in Sensory Rhodopsin Signaling

Overview
Specialty Science
Date 2008 Oct 15
PMID 18852467
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.

Citing Articles

Probing Channelrhodopsin Electrical Activity in Algal Cell Populations.

Sineshchekov O, Govorunova E, Spudich J Methods Mol Biol. 2020; 2191:85-96.

PMID: 32865740 PMC: 10641915. DOI: 10.1007/978-1-0716-0830-2_6.


Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering.

Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y Biophys Rev. 2017; 9(6):861-876.

PMID: 29178082 PMC: 5711702. DOI: 10.1007/s12551-017-0335-x.


Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.

Govorunova E, Sineshchekov O, Li H, Spudich J Annu Rev Biochem. 2017; 86:845-872.

PMID: 28301742 PMC: 5747503. DOI: 10.1146/annurev-biochem-101910-144233.


Gating mechanisms of a natural anion channelrhodopsin.

Sineshchekov O, Govorunova E, Li H, Spudich J Proc Natl Acad Sci U S A. 2015; 112(46):14236-41.

PMID: 26578767 PMC: 4655503. DOI: 10.1073/pnas.1513602112.


Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin.

da Silva G, Goblirsch B, Tsai A, Spudich J Biochemistry. 2015; 54(25):3950-9.

PMID: 26037033 PMC: 4760629. DOI: 10.1021/bi501386d.


References
1.
Jung K, Spudich E, Dag P, Spudich J . Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I. Biochemistry. 1999; 38(40):13270-4. DOI: 10.1021/bi991180w. View

2.
Der A, Oroszi L, Kulcsar A, Zimanyi L, Toth-Boconadi R, Keszthelyi L . Interpretation of the spatial charge displacements in bacteriorhodopsin in terms of structural changes during the photocycle. Proc Natl Acad Sci U S A. 1999; 96(6):2776-81. PMC: 15845. DOI: 10.1073/pnas.96.6.2776. View

3.
Sineshchekov O, Trivedi V, Sasaki J, Spudich J . Photochromicity of Anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J Biol Chem. 2005; 280(15):14663-8. DOI: 10.1074/jbc.M501416200. View

4.
Hulko M, Berndt F, Gruber M, Linder J, Truffault V, Schultz A . The HAMP domain structure implies helix rotation in transmembrane signaling. Cell. 2006; 126(5):929-40. DOI: 10.1016/j.cell.2006.06.058. View

5.
Spudich J . The multitalented microbial sensory rhodopsins. Trends Microbiol. 2006; 14(11):480-7. DOI: 10.1016/j.tim.2006.09.005. View