» Articles » PMID: 18710229

"Three-dimensional Hybridization" with Polyvalent DNA-gold Nanoparticle Conjugates

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2008 Aug 20
PMID 18710229
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

We have determined the minimum number of base pairings necessary to stabilize DNA-Au NP aggregates as a function of salt concentration for particles between 15 and 150 nm in diameter. Significantly, we find that sequences containing a single base pair interaction are capable of effecting hybridization between 150 nm DNA-Au NPs. While traditional DNA hybridization involves two strands interacting in one dimension (1D, Z), we propose that hybridization in the context of an aggregate of polyvalent DNA-Au NP conjugates occurs in three dimensions (many oligonucleotides oriented perpendicular to the X, Y plane engage in base pairing), making nanoparticle assembly possible with three or fewer base pairings per DNA strand. These studies enabled us to compare the stability of duplex DNA free in solution and bound to the nanoparticle surface. We estimate that 4-8, 6-19, or 8-33 additional DNA bases must be added to free duplex DNA to achieve melting temperatures equivalent to hybridized systems formed from 15, 60, or 150 nm DNA-Au NPs, respectively. In addition, we estimate that the equilibrium binding constant (K(eq)) for 15 nm DNA-Au NPs (3 base pairs) is approximately 3 orders of magnitude higher than the K(eq) for the corresponding nanoparticle free system.

Citing Articles

Spherical Nucleic Acids: Integrating Nanotechnology Concepts into General Chemistry Curricula.

Petrosko S, Coleman B, Drout R, Schultz J, Mirkin C J Chem Educ. 2022; 98(10):3090-3099.

PMID: 35250048 PMC: 8890693. DOI: 10.1021/acs.jchemed.1c00441.


Controlling the Reversible Assembly of Liposomes through a Multistimuli Responsive Anchored DNA.

Hernandez-Ainsa S, Ricci M, Hilton L, Avino A, Eritja R, Keyser U Nano Lett. 2016; 16(7):4462-6.

PMID: 27367802 PMC: 4956241. DOI: 10.1021/acs.nanolett.6b01618.


The Significance of Multivalent Bonding Motifs and "Bond Order" in DNA-Directed Nanoparticle Crystallization.

Thaner R, Eryazici I, Macfarlane R, Brown K, Lee B, Nguyen S J Am Chem Soc. 2016; 138(19):6119-22.

PMID: 27148838 PMC: 4928491. DOI: 10.1021/jacs.6b02479.


Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms.

Thavanathan J, Huang N, Thong K Int J Nanomedicine. 2015; 10:2711-22.

PMID: 25897217 PMC: 4396418. DOI: 10.2147/IJN.S74753.


Liposomal spherical nucleic acids.

Banga R, Chernyak N, Narayan S, Nguyen S, Mirkin C J Am Chem Soc. 2014; 136(28):9866-9.

PMID: 24983505 PMC: 4280063. DOI: 10.1021/ja504845f.


References
1.
Lee J, Stoeva S, Mirkin C . DNA-induced size-selective separation of mixtures of gold nanoparticles. J Am Chem Soc. 2006; 128(27):8899-903. DOI: 10.1021/ja061651j. View

2.
Rosi N, Mirkin C . Nanostructures in biodiagnostics. Chem Rev. 2005; 105(4):1547-62. DOI: 10.1021/cr030067f. View

3.
Rosi N, Giljohann D, Thaxton C, Lytton-Jean A, Han M, Mirkin C . Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006; 312(5776):1027-30. DOI: 10.1126/science.1125559. View

4.
Elghanian R, Storhoff J, Mucic R, LETSINGER R, Mirkin C . Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997; 277(5329):1078-81. DOI: 10.1126/science.277.5329.1078. View

5.
Seferos D, Giljohann D, Rosi N, Mirkin C . Locked nucleic acid-nanoparticle conjugates. Chembiochem. 2007; 8(11):1230-2. DOI: 10.1002/cbic.200700262. View