» Articles » PMID: 18682393

MicroRNAs MiR-186 and MiR-150 Down-regulate Expression of the Pro-apoptotic Purinergic P2X7 Receptor by Activation of Instability Sites at the 3'-untranslated Region of the Gene That Decrease Steady-state Levels of the Transcript

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2008 Aug 7
PMID 18682393
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

The P2X7 receptor regulates cell growth through mediation of apoptosis. P2X7 levels are lower in cancer epithelial cells than in normal cells, and previous studies showed that expression of P2X7 was regulated post-transcriptionally. The objective of the study was to understand regulation of P2X7 mRNA stability. Overexpression of a reporter containing the full-length human P2X7 3'-untranslated region (3'-UTR) or reporters containing parts of the 3'-UTR-P2X7 were associated with increased abundance of the construct in normal cells and decreased abundance in cancer epithelial cells. Sequences within the 3'-UTR-P2X7, which are putative target sites for the microRNAs, miR-186 (middle segment) and miR-150 (distal segment), decreased the abundance of the P2X7 transcript. Overexpression in cancer cells of mutated miR-186 and miR-150 target sites was associated with lower levels of the reporter genes. In normal cells overexpression of the mutated miR-186 target site was associated with marked increased concentration, but overexpression of the miR-150 target site reporters, wild-type and mutant, did not change over time. Levels of miR-186 and miR-150 were higher in cancer than in normal cells, and treatment with miR-186 and miR-150 inhibitors increased P2X7 mRNA. In human embryonic kidney-293 cells heterologously expressing the full-length 3'-UTR-P2X7 luciferase reporter, miR-186 and miR-150 inhibitors increased luciferase activity, whereas miR-186 and miR-150 mimics decreased luciferase activity after actinomycin D treatment. These data suggest that increased expression of miR-186 and miR-150 in cancer epithelial cells decreases P2X7 mRNA by activation of miR-186 and miR-150 instability target sites located at the 3'-UTR-P2X7.

Citing Articles

Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism.

Hashem M, Khosroshahi E, Aliahmady M, Ghanei M, Rezaie Y, Jafari Y Noncoding RNA Res. 2024; 9(2):560-582.

PMID: 38515791 PMC: 10955558. DOI: 10.1016/j.ncrna.2024.01.009.


Bovine oviductal organoids: a multi-omics approach to capture the cellular and extracellular molecular response of the oviduct to heat stress.

Menjivar N, Gad A, Thompson R, Meyers M, Hollinshead F, Tesfaye D BMC Genomics. 2023; 24(1):646.

PMID: 37891479 PMC: 10605953. DOI: 10.1186/s12864-023-09746-y.


EXPRESSION LEVELS OF FOXO-1, P27KIP1, MIR-27, MIR-186 AND AKT1/AKT-P PROTEINS IN WOMEN WITH ENDOMETRIAL CANCER AND HYPERPLASIA: IMPLICATIONS FOR THE HUMAN REPRODUCTIVE SYSTEM.

Ghaderi P, Fallah S, Khaledi H, Tehranian A, Rahmati F, Sheikhhasani S Acta Endocrinol (Buchar). 2023; 19(1):1-9.

PMID: 37601705 PMC: 10439323. DOI: 10.4183/aeb.2023.1.


The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications.

Rotondo J, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G Cancers (Basel). 2022; 14(5).

PMID: 35267424 PMC: 8909580. DOI: 10.3390/cancers14051116.


MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets.

Jorgensen B, Ro S Int J Mol Sci. 2022; 23(4).

PMID: 35216281 PMC: 8876324. DOI: 10.3390/ijms23042166.


References
1.
Loomis W, Namiki S, Ostrom R, Insel P, Junger W . Hypertonic stress increases T cell interleukin-2 expression through a mechanism that involves ATP release, P2 receptor, and p38 MAPK activation. J Biol Chem. 2002; 278(7):4590-6. DOI: 10.1074/jbc.M207868200. View

2.
Grahames C, Michel A, Chessell I, Humphrey P . Pharmacological characterization of ATP- and LPS-induced IL-1beta release in human monocytes. Br J Pharmacol. 1999; 127(8):1915-21. PMC: 1566177. DOI: 10.1038/sj.bjp.0702732. View

3.
Rodriguez-Nieto S, Zhivotovsky B . Role of alterations in the apoptotic machinery in sensitivity of cancer cells to treatment. Curr Pharm Des. 2006; 12(34):4411-25. DOI: 10.2174/138161206779010495. View

4.
Wang Y, Stricker H, Gou D, Liu L . MicroRNA: past and present. Front Biosci. 2006; 12:2316-29. DOI: 10.2741/2234. View

5.
Lewis B, Burge C, Bartel D . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1):15-20. DOI: 10.1016/j.cell.2004.12.035. View