» Articles » PMID: 18599306

An Electrically Compensated Trap Designed to Eighth Order for FT-ICR Mass Spectrometry

Overview
Specialty Chemistry
Date 2008 Jul 5
PMID 18599306
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

We present the design, guided by theory to eighth order, and the first evaluation of a Fourier transform ion cyclotron resonance (FT-ICR) compensated trap. The purpose of the new trap is to reduce effects of the nonlinear components of the trapping electric field; those nonliner components introduce variations in the cyclotron frequency of an ion depending on its spatial position (its cyclotron and trapping mode amplitudes). This frequency spread leads to decreased mass resolving power and signal-to-noise. The reduction of the spread of cyclotron frequencies, as explicitly modeled in theory, serves as the basis for our design. The compensated trap shows improved signal-to-noise and at least a threefold increase in mass resolving power compared to the uncompensated trap at the same trapping voltage. Resolving powers (FWHH) as high as 1.7 x 10(7) for the [M + H](+) of vasopressin at m/z 1084.5 in a 7.0-tesla induction can be obtained when using trap compensation.

Citing Articles

Evaluation of major historical ICR cell designs using electric field simulations.

Nikolaev E, Lioznov A Mass Spectrom Rev. 2020; 41(2):262-283.

PMID: 33238049 PMC: 9292346. DOI: 10.1002/mas.21671.


A PERSPECTIVE ON PERSONAL CONTRIBUTIONS TO FT-ICR MASS SPECTROMETRY.

Gross M, Rempel D Mass Spectrom Rev. 2020; 41(2):178-193.

PMID: 32960989 PMC: 8888036. DOI: 10.1002/mas.21657.


Multiparticle Simulations of Quadrupolar Ion Detection in an Ion Cyclotron Resonance Cell with Four Narrow Aperture Detection Electrodes.

Driver J, Nagornov K, Kozhinov A, Tsybin Y, Kharchenko A, Jonathan Amster I J Am Soc Mass Spectrom. 2017; 29(1):51-62.

PMID: 29038997 DOI: 10.1007/s13361-017-1817-6.


Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

Nagornov K, Kozhinov A, Tsybin Y J Am Soc Mass Spectrom. 2017; 28(4):768-780.

PMID: 28213728 DOI: 10.1007/s13361-017-1598-y.


Developments in FTICR-MS and Its Potential for Body Fluid Signatures.

Nicolardi S, Bogdanov B, Deelder A, Palmblad M, van der Burgt Y Int J Mol Sci. 2015; 16(11):27133-44.

PMID: 26580595 PMC: 4661870. DOI: 10.3390/ijms161126012.


References
1.
Bruce J, Anderson G, Lin C, Gorshkov M, Rockwood A, Smith R . A novel high-performance fourier transform ion cyclotron resonance cell for improved biopolymer characterization. J Mass Spectrom. 2000; 35(1):85-94. DOI: 10.1002/(SICI)1096-9888(200001)35:1<85::AID-JMS910>3.0.CO;2-7. View

2.
Rempel D, Ledford Jr E, Huang S, Gross M . Parametric mode operation of a hyperbolic Penning trap for Fourier transform mass spectrometry. Anal Chem. 1987; 59(20):2527-32. DOI: 10.1021/ac00147a018. View

3.
Jebanathirajah J, Pittman J, Thomson B, Budnik B, Kaur P, Rape M . Characterization of a new qQq-FTICR mass spectrometer for post-translational modification analysis and top-down tandem mass spectrometry of whole proteins. J Am Soc Mass Spectrom. 2005; 16(12):1985-99. DOI: 10.1016/j.jasms.2005.08.008. View

4.
Easterling M, Mize T, Amster I . Routine Part-per-Million Mass Accuracy for High- Mass Ions:  Space-Charge Effects in MALDI FT-ICR. Anal Chem. 2011; 71(3):624-32. DOI: 10.1021/ac980690d. View

5.
Kaiser N, Bruce J . Observation of increased ion cyclotron resonance signal duration through electric field perturbations. Anal Chem. 2005; 77(18):5973-81. DOI: 10.1021/ac050606b. View