» Articles » PMID: 17404225

Protein Identification by Spectral Networks Analysis

Overview
Specialty Science
Date 2007 Apr 4
PMID 17404225
Citations 80
Authors
Affiliations
Soon will be listed here.
Abstract

Advances in tandem mass spectrometry (MS/MS) steadily increase the rate of generation of MS/MS spectra. As a result, the existing approaches that compare spectra against databases are already facing a bottleneck, particularly when interpreting spectra of modified peptides. Here we explore a concept that allows one to perform an MS/MS database search without ever comparing a spectrum against a database. We propose to take advantage of spectral pairs, which are pairs of spectra obtained from overlapping (often nontryptic) peptides or from unmodified and modified versions of the same peptide. Having a spectrum of a modified peptide paired with a spectrum of an unmodified peptide allows one to separate the prefix and suffix ladders, to greatly reduce the number of noise peaks, and to generate a small number of peptide reconstructions that are likely to contain the correct one. The MS/MS database search is thus reduced to extremely fast pattern-matching (rather than time-consuming matching of spectra against databases). In addition to speed, our approach provides a unique paradigm for identifying posttranslational modifications by means of spectral networks analysis.

Citing Articles

[Advances in molecular networking technology for discovering emerging contaminants and transformation products].

Tan X, Zhang Y, Jiao Z, Yu N, Wei S Se Pu. 2024; 43(1):33-42.

PMID: 39722619 PMC: 11686472. DOI: 10.3724/SP.J.1123.2024.03014.


Network Topology Evaluation and Transitive Alignments for Molecular Networking.

Wang X, Strobel M, Aron A, Phelan V, Acharya D, Brown C J Am Soc Mass Spectrom. 2024; 35(9):2165-2175.

PMID: 39133821 PMC: 11516331. DOI: 10.1021/jasms.4c00208.


Demystifying PTM Identification Using MODplus: Best Practices and Pitfalls.

Na S, Paek E Methods Mol Biol. 2024; 2836:37-55.

PMID: 38995534 DOI: 10.1007/978-1-0716-4007-4_3.


Fast mass spectrometry search and clustering of untargeted metabolomics data.

Mongia M, Yasaka T, Liu Y, Guler M, Lu L, Bhagwat A Nat Biotechnol. 2024; 42(11):1672-1677.

PMID: 38168990 DOI: 10.1038/s41587-023-01985-4.


Fast alignment of mass spectra in large proteomics datasets, capturing dissimilarities arising from multiple complex modifications of peptides.

Prunier G, Cherkaoui M, Lysiak A, Langella O, Blein-Nicolas M, Lollier V BMC Bioinformatics. 2023; 24(1):421.

PMID: 37940845 PMC: 10631047. DOI: 10.1186/s12859-023-05555-y.


References
1.
David L, Lampi K, Lund A, Smith J . The sequence of human betaB1-crystallin cDNA allows mass spectrometric detection of betaB1 protein missing portions of its N-terminal extension. J Biol Chem. 1996; 271(8):4273-9. DOI: 10.1074/jbc.271.8.4273. View

2.
Liebler D, Hansen B, Davey S, Tiscareno L, Mason D . Peptide sequence motif analysis of tandem MS data with the SALSA algorithm. Anal Chem. 2002; 74(1):203-10. DOI: 10.1021/ac0155512. View

3.
Tsur D, Tanner S, Zandi E, Bafna V, Pevzner P . Identification of post-translational modifications by blind search of mass spectra. Nat Biotechnol. 2005; 23(12):1562-7. DOI: 10.1038/nbt1168. View

4.
Frank A, Pevzner P . PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem. 2005; 77(4):964-73. DOI: 10.1021/ac048788h. View

5.
MacCoss M, McDonald W, Saraf A, Sadygov R, Clark J, Tasto J . Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci U S A. 2002; 99(12):7900-5. PMC: 122992. DOI: 10.1073/pnas.122231399. View