» Articles » PMID: 18591426

Involvement of Autophagy in Trypsinogen Activation Within the Pancreatic Acinar Cells

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2008 Jul 2
PMID 18591426
Citations 108
Authors
Affiliations
Soon will be listed here.
Abstract

Autophagy is mostly a nonselective bulk degradation system within cells. Recent reports indicate that autophagy can act both as a protector and killer of the cell depending on the stage of the disease or the surrounding cellular environment (for review see Cuervo, A.M. 2004. Trends Cell Biol. 14:70-77). We found that cytoplasmic vacuoles induced in pancreatic acinar cells by experimental pancreatitis were autophagic in origin, as demonstrated by microtubule-associated protein 1 light chain 3 expression and electron microscopy experiments. To analyze the role of macroautophagy in acute pancreatitis, we produced conditional knockout mice lacking the autophagy-related 5 gene in acinar cells. Acute pancreatitis was not observed, except for very mild edema in a restricted area, in conditional knockout mice. Unexpectedly, trypsinogen activation was greatly reduced in the absence of autophagy. These results suggest that autophagy exerts devastating effects in pancreatic acinar cells by activation of trypsinogen to trypsin in the early stage of acute pancreatitis through delivering trypsinogen to the lysosome.

Citing Articles

From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges.

Du W, Wang X, Zhou Y, Wu W, Huang H, Jin Z J Nanobiotechnology. 2025; 23(1):57.

PMID: 39881355 PMC: 11776322. DOI: 10.1186/s12951-025-03106-6.


Gabexate mesylate thermo-sensitive in-situ gel is effective for treating grade-III pancreatic trauma in beagle dogs guided by contrast-enhanced ultrasound.

Gao H, Yang S, Song Q, Tang W, Wang Y, Shi B Animal Model Exp Med. 2025; 8(3):534-543.

PMID: 39846391 PMC: 11904112. DOI: 10.1002/ame2.12526.


Transfection of 12/15-lipoxygenase effectively alleviates inflammatory responses during experimental acute pancreatitis.

Sun H, Bai Y, Qin Z, Li R, Madzikatire T, Akuetteh P World J Gastroenterol. 2024; 30(42):4544-4556.

PMID: 39563743 PMC: 11572619. DOI: 10.3748/wjg.v30.i42.4544.


Lysosomal physiology and pancreatic lysosomal stress in diabetes mellitus.

Hao M, Sebag S, Qian Q, Yang L eGastroenterology. 2024; 2(3).

PMID: 39512752 PMC: 11542681. DOI: 10.1136/egastro-2024-100096.


Molecular mechanism and potential role of mitophagy in acute pancreatitis.

Zhu L, Xu Y, Lei J Mol Med. 2024; 30(1):136.

PMID: 39227768 PMC: 11373529. DOI: 10.1186/s10020-024-00903-x.


References
1.
Tsukada M, Ohsumi Y . Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993; 333(1-2):169-74. DOI: 10.1016/0014-5793(93)80398-e. View

2.
Towatari T, Ide M, Ohba K, Chiba Y, Murakami M, Shiota M . Identification of ectopic anionic trypsin I in rat lungs potentiating pneumotropic virus infectivity and increased enzyme level after virus infection. Eur J Biochem. 2002; 269(10):2613-21. DOI: 10.1046/j.1432-1033.2002.02937.x. View

3.
Hirota M, Ohmuraya M, Baba H . Genetic background of pancreatitis. Postgrad Med J. 2006; 82(974):775-8. PMC: 2653919. DOI: 10.1136/pgmj.2006.050591. View

4.
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I . Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005; 169(3):425-34. PMC: 2171928. DOI: 10.1083/jcb.200412022. View

5.
Steer M, Meldolesi J . The cell biology of experimental pancreatitis. N Engl J Med. 1987; 316(3):144-50. DOI: 10.1056/NEJM198701153160306. View