» Articles » PMID: 18584052

Detecting Periodic Genes from Irregularly Sampled Gene Expressions: a Comparison Study

Overview
Publisher Springer
Specialty Biology
Date 2008 Jun 28
PMID 18584052
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Time series microarray measurements of gene expressions have been exploited to discover genes involved in cell cycles. Due to experimental constraints, most microarray observations are obtained through irregular sampling. In this paper three popular spectral analysis schemes, namely, Lomb-Scargle, Capon and missing-data amplitude and phase estimation (MAPES), are compared in terms of their ability and efficiency to recover periodically expressed genes. Based on in silico experiments for microarray measurements of Saccharomyces cerevisiae, Lomb-Scargle is found to be the most efficacious scheme. 149 genes are then identified to be periodically expressed in the Drosophila melanogaster data set.

Citing Articles

TimeTrial: An Interactive Application for Optimizing the Design and Analysis of Transcriptomic Time-Series Data in Circadian Biology Research.

Ness-Cohn E, Iwanaszko M, Kath W, Allada R, Braun R J Biol Rhythms. 2020; 35(5):439-451.

PMID: 32613882 PMC: 7534021. DOI: 10.1177/0748730420934672.


Methods detecting rhythmic gene expression are biologically relevant only for strong signal.

Laloum D, Robinson-Rechavi M PLoS Comput Biol. 2020; 16(3):e1007666.

PMID: 32182235 PMC: 7100990. DOI: 10.1371/journal.pcbi.1007666.


Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes.

Phillips N, Manning C, Papalopulu N, Rattray M PLoS Comput Biol. 2017; 13(5):e1005479.

PMID: 28493880 PMC: 5444866. DOI: 10.1371/journal.pcbi.1005479.


MathIOmica: An Integrative Platform for Dynamic Omics.

Mias G, Yusufaly T, Roushangar R, Brooks L, Singh V, Christou C Sci Rep. 2016; 6:37237.

PMID: 27883025 PMC: 5121649. DOI: 10.1038/srep37237.


Metabolome progression during early gut microbial colonization of gnotobiotic mice.

Marcobal A, Yusufaly T, Higginbottom S, Snyder M, Sonnenburg J, Mias G Sci Rep. 2015; 5:11589.

PMID: 26118551 PMC: 4484351. DOI: 10.1038/srep11589.


References
1.
de Lichtenberg U, Jensen L, Fausboll A, Jensen T, Bork P, Brunak S . Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics. 2004; 21(7):1164-71. DOI: 10.1093/bioinformatics/bti093. View

2.
Ahdesmaki M, Lahdesmaki H, Pearson R, Huttunen H, Yli-Harja O . Robust detection of periodic time series measured from biological systems. BMC Bioinformatics. 2005; 6:117. PMC: 1168888. DOI: 10.1186/1471-2105-6-117. View

3.
Ahdesmaki M, Lahdesmaki H, Gracey A, Shmulevich L, Yli-Harja O . Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC Bioinformatics. 2007; 8:233. PMC: 1934414. DOI: 10.1186/1471-2105-8-233. View

4.
Luan Y, Li H . Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics. 2004; 20(3):332-9. DOI: 10.1093/bioinformatics/btg413. View

5.
Cooper S . Rethinking synchronization of mammalian cells for cell cycle analysis. Cell Mol Life Sci. 2003; 60(6):1099-106. PMC: 11138607. DOI: 10.1007/s00018-003-2253-2. View