» Articles » PMID: 18562569

Molecular Determinants of Magnesium Homeostasis: Insights from Human Disease

Overview
Specialty Nephrology
Date 2008 Jun 20
PMID 18562569
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

The past decade has witnessed multiple advances in our understanding of magnesium (Mg(2+)) homeostasis. The discovery that mutations in claudin-16/paracellin-1 or claudin-19 are responsible for familial hypomagnesemia with hypercalciuria and nephrocalcinosis provided insight into the molecular mechanisms governing paracellular transport of Mg(2+). Our understanding of the transcellular movement of Mg(2+) was similarly enhanced by the realization that defects in transient receptor potential melastatin 6 (TRPM6) cause hypomagnesemia with secondary hypocalcemia. This channel regulates the apical entry of Mg(2+) into epithelia. In so doing, TRPM6 alters whole-body Mg(2+) homeostasis by controlling urinary excretion. Consequently, investigation into the regulation of TRPM6 has increased. Acid-base status, 17beta estradiol, and the immunosuppressive agents FK506 and cyclosporine affect plasma Mg(2+) levels by altering TRPM6 expression. A mutation in epithelial growth factor is responsible for isolated autosomal recessive hypomagnesemia, and epithelial growth factor activates TRPM6. A defect in the gamma-subunit of the Na,K-ATPase causes isolated dominant hypomagnesemia by altering TRPM6 activity through a decrease in the driving force for apical Mg(2+) influx. We anticipate that the next decade will provide further detail into the control of the gatekeeper TRPM6 and, therefore, overall whole-body Mg(2+) balance.

Citing Articles

Calcium to magnesium ratio as a superior biomarker for nephrolithiasis detection in primary hyperparathyroidism.

Yalcin N, Ertinmaz Ozkan A, Gunes E, Koca N Sci Rep. 2025; 15(1):3545.

PMID: 39875421 PMC: 11775213. DOI: 10.1038/s41598-025-86954-4.


Closed and open structures of the eukaryotic magnesium channel Mrs2 reveal the auto-ligand-gating regulation mechanism.

Li P, Liu S, Wallerstein J, Villones R, Huang P, Lindkvist-Petersson K Nat Struct Mol Biol. 2024; .

PMID: 39609652 DOI: 10.1038/s41594-024-01432-1.


Magnesium (Mg): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation.

Kumar A, Mehan S, Tiwari A, Khan Z, Gupta G, Narula A Curr Pharm Des. 2024; 30(39):3074-3107.

PMID: 39253923 DOI: 10.2174/0113816128321466240816075041.


Dietary Magnesium Intake and Proteinuria: Is There a Relationship?.

Mohtashamian A, Mozaffari-Rad N, Soleimani A, Akbari H, Arabi V, Sharifi N Biol Trace Elem Res. 2023; 202(9):3959-3966.

PMID: 38110607 DOI: 10.1007/s12011-023-04005-3.


Hypomagnesemia may be associated with symptomatic disease in patients with primary hyperparathyroidism.

Duger H, Ucan B, Caliskan M, Bostan H, Demirci T, Gul U Endocrine. 2023; 83(2):466-472.

PMID: 37922091 DOI: 10.1007/s12020-023-03577-3.


References
1.
Grubbs R . Intracellular magnesium and magnesium buffering. Biometals. 2002; 15(3):251-9. DOI: 10.1023/a:1016026831789. View

2.
Pihakaski-Maunsbach K, Vorum H, Honore B, Tokonabe S, Frokiaer J, Garty H . Locations, abundances, and possible functions of FXYD ion transport regulators in rat renal medulla. Am J Physiol Renal Physiol. 2006; 291(5):F1033-44. DOI: 10.1152/ajprenal.00086.2006. View

3.
Muallem S, Moe O . When EGF is offside, magnesium is wasted. J Clin Invest. 2007; 117(8):2086-9. PMC: 1934592. DOI: 10.1172/JCI33004. View

4.
Tiel Groenestege W, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S . Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007; 117(8):2260-7. PMC: 1934557. DOI: 10.1172/JCI31680. View

5.
Nijenhuis T, Hoenderop J, Bindels R . Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol. 2004; 15(3):549-57. DOI: 10.1097/01.asn.0000113318.56023.b6. View