Pokorzynski N, Groisman E
Microbiol Mol Biol Rev. 2023; 87(3):e0019822.
PMID: 37358444
PMC: 10521370.
DOI: 10.1128/mmbr.00198-22.
Regmi A, Tague J, Boas Lichty K, Boyd E
Appl Environ Microbiol. 2023; 89(1):e0187422.
PMID: 36602323
PMC: 9888186.
DOI: 10.1128/aem.01874-22.
Aoyama J, Raina M, Zhong A, Storz G
Proc Natl Acad Sci U S A. 2022; 119(10):e2119866119.
PMID: 35239441
PMC: 8916003.
DOI: 10.1073/pnas.2119866119.
Anderson B, Schumacher M, Yang J, Turdiev A, Turdiev H, Schroeder J
Nucleic Acids Res. 2021; 50(2):847-866.
PMID: 34967415
PMC: 8789054.
DOI: 10.1093/nar/gkab1281.
Lauritsen I, Frendorf P, Capucci S, Heyde S, Blomquist S, Wendel S
Nat Commun. 2021; 12(1):5880.
PMID: 34620864
PMC: 8497467.
DOI: 10.1038/s41467-021-26098-x.
Bacterial-induced pH shifts link individual cell physiology to macroscale collective behavior.
Dharanishanthi V, Orgad A, Rotem N, Hagai E, Kerstnus-Banchik J, Ben-Ari J
Proc Natl Acad Sci U S A. 2021; 118(14).
PMID: 33795512
PMC: 8040824.
DOI: 10.1073/pnas.2014346118.
Coordination of bacterial proteome with metabolism by cyclic AMP signalling.
You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson C
Nature. 2013; 500(7462):301-6.
PMID: 23925119
PMC: 4038431.
DOI: 10.1038/nature12446.
Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms.
Russell J, Baldwin R
Appl Environ Microbiol. 1978; 36(2):319-29.
PMID: 16345311
PMC: 291221.
DOI: 10.1128/aem.36.2.319-329.1978.
The effect of urea on catabolite sensitive operons in Escherichia coli K 12.
Sanzey B, Ullmann A
Mol Gen Genet. 1980; 178(3):611-6.
PMID: 6993857
DOI: 10.1007/BF00337868.
Role of catabolite regulatory mechanisms in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis.
Mountfort D, Asher R
Appl Environ Microbiol. 1983; 46(6):1331-8.
PMID: 6660873
PMC: 239572.
DOI: 10.1128/aem.46.6.1331-1338.1983.
Anomalous expression of the E. coli lac operon in Proteus mirabilis. I. Effects of L8 and L8 UV5.
Roberts M, Baumberg S
Mol Gen Genet. 1984; 198(2):159-65.
PMID: 6441102
DOI: 10.1007/BF00328716.
Mechanism of CRP-mediated cya suppression in Escherichia coli.
Harman J, Dobrogosz W
J Bacteriol. 1983; 153(1):191-9.
PMID: 6294047
PMC: 217357.
DOI: 10.1128/jb.153.1.191-199.1983.
Cyclic nucleotides in procaryotes.
Botsford J
Microbiol Rev. 1981; 45(4):620-42.
PMID: 6276705
PMC: 281530.
DOI: 10.1128/mr.45.4.620-642.1981.
Isolation and characterization of an Escherichia coli mutant affected in the regulation of adenylate cyclase.
Danchin A, Ullmann A
J Bacteriol. 1981; 148(3):753-61.
PMID: 6273380
PMC: 216272.
DOI: 10.1128/jb.148.3.753-761.1981.
Catabolite repression of different inducible enzymes in Escherichia coli and the effect of cAMP.
Jiresova M, Janecek J, Naprstek J, Spizek J, Dobrova Z
Folia Microbiol (Praha). 1981; 26(4):265-9.
PMID: 6269972
DOI: 10.1007/BF02927249.
In vivo role of the relA+ gene in regulation of the lac operon.
Primakoff P
J Bacteriol. 1981; 145(1):410-6.
PMID: 6257637
PMC: 217287.
DOI: 10.1128/jb.145.1.410-416.1981.
Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon.
Kline E, Bankaitis V, Brown C, Montefiori D
J Bacteriol. 1980; 141(2):770-8.
PMID: 6245056
PMC: 293687.
DOI: 10.1128/jb.141.2.770-778.1980.
Transcriptional control of polarity in Escherichia coli by cAMP.
Danchin A, Ullmann A
Mol Gen Genet. 1984; 195(1-2):96-100.
PMID: 6092868
DOI: 10.1007/BF00332730.
Catabolite repression and role of cyclic AMP in CO2 fixation and H2 metabolism in Rhizobium spp.
McGetrick A, Goulding C, Manian S, OGara F
J Bacteriol. 1985; 163(3):1282-4.
PMID: 2993243
PMC: 219275.
DOI: 10.1128/jb.163.3.1282-1284.1985.
Involvement of cyclic AMP and its receptor protein in the sensitivity of Escherichia coli K 12 toward serine: excretion of 2-ketobutyrate, a precursor of isoleucine.
Daniel J, Danchin A
Mol Gen Genet. 1979; 176(3):343-50.
PMID: 230407
DOI: 10.1007/BF00333096.