» Articles » PMID: 18536691

The Growing Scope of Applications of Genome-scale Metabolic Reconstructions Using Escherichia Coli

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2008 Jun 10
PMID 18536691
Citations 227
Authors
Affiliations
Soon will be listed here.
Abstract

The number and scope of methods developed to interrogate and use metabolic network reconstructions has significantly expanded over the past 15 years. In particular, Escherichia coli metabolic network reconstruction has reached the genome scale and been utilized to address a broad spectrum of basic and practical applications in five main categories: metabolic engineering, model-directed discovery, interpretations of phenotypic screens, analysis of network properties and studies of evolutionary processes. Spurred on by these accomplishments, the field is expected to move forward and further broaden the scope and content of network reconstructions, develop new and novel in silico analysis tools, and expand in adaptation to uses of proximal and distal causation in biology. Taken together, these efforts will solidify a mechanistic genotype-phenotype relationship for microbial metabolism.

Citing Articles

Metabolic modelling as a powerful tool to identify critical components of Pneumocystis growth medium.

Nev O, Zamaraeva E, De Oliveira R, Ryzhkov I, Duvenage L, Abou-Jaoude W PLoS Comput Biol. 2024; 20(10):e1012545.

PMID: 39466836 PMC: 11542897. DOI: 10.1371/journal.pcbi.1012545.


Leveraging genome-scale metabolic models to understand aerobic methanotrophs.

Wutkowska M, Tlaskal V, Bordel S, Stein L, Nweze J, Daebeler A ISME J. 2024; 18(1).

PMID: 38861460 PMC: 11195481. DOI: 10.1093/ismejo/wrae102.


Using metabolic networks to predict cross-feeding and competition interactions between microorganisms.

Silva-Andrade C, Rodriguez-Fernandez M, Garrido D, Martin A Microbiol Spectr. 2024; 12(5):e0228723.

PMID: 38506512 PMC: 11064492. DOI: 10.1128/spectrum.02287-23.


Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony.

Hashemi S, Razaghi-Moghadam Z, Nikoloski Z PLoS Comput Biol. 2023; 19(9):e1011489.

PMID: 37721963 PMC: 10538754. DOI: 10.1371/journal.pcbi.1011489.


Model-driven experimental design workflow expands understanding of regulatory role of Nac in .

Park J, Lee S, Ebrahim A, Scott-Nevros Z, Kim J, Yang L NAR Genom Bioinform. 2023; 5(1):lqad006.

PMID: 36685725 PMC: 9853098. DOI: 10.1093/nargab/lqad006.


References
1.
Pal C, Papp B, Lercher M, Csermely P, Oliver S, Hurst L . Chance and necessity in the evolution of minimal metabolic networks. Nature. 2006; 440(7084):667-70. DOI: 10.1038/nature04568. View

2.
Fong S, Burgard A, Herring C, Knight E, Blattner F, Maranas C . In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng. 2005; 91(5):643-8. DOI: 10.1002/bit.20542. View

3.
Shlomi T, Berkman O, Ruppin E . Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A. 2005; 102(21):7695-700. PMC: 1140402. DOI: 10.1073/pnas.0406346102. View

4.
Fuhrer T, Chen L, Sauer U, Vitkup D . Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J Bacteriol. 2007; 189(22):8073-8. PMC: 2168661. DOI: 10.1128/JB.01027-07. View

5.
Lee K, Park J, Kim T, Kim H, Lee S . Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol. 2007; 3:149. PMC: 2174629. DOI: 10.1038/msb4100196. View