» Articles » PMID: 18515369

Noncontact Measurement of the Local Mechanical Properties of Living Cells Using Pressure Applied Via a Pipette

Abstract

Mechanosensitivity in living biological tissue is a study area of increasing importance, but investigative tools are often inadequate. We have developed a noncontact nanoscale method to apply quantified positive and negative force at defined positions to the soft responsive surface of living cells. The method uses applied hydrostatic pressure (0.1-150 kPa) through a pipette, while the pipette-sample separation is kept constant above the cell surface using ion conductance based distance feedback. This prevents any surface contact, or contamination of the pipette, allowing repeated measurements. We show that we can probe the local mechanical properties of living cells using increasing pressure, and hence measure the nanomechanical properties of the cell membrane and the underlying cytoskeleton in a variety of cells (erythrocytes, epithelium, cardiomyocytes and neurons). Because the cell surface can first be imaged without pressure, it is possible to relate the mechanical properties to the local cell topography. This method is well suited to probe the nanomechanical properties and mechanosensitivity of living cells.

Citing Articles

Opto-SICM framework combines optogenetics with scanning ion conductance microscopy for probing cell-to-cell contacts.

Song Q, Alvarez-Laviada A, Schrup S, Reilly-ODonnell B, Entcheva E, Gorelik J Commun Biol. 2023; 6(1):1131.

PMID: 37938652 PMC: 10632396. DOI: 10.1038/s42003-023-05509-3.


Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate.

Kolmogorov V, Erofeev A, Vaneev A, Gorbacheva L, Kolesov D, Klyachko N Cells. 2023; 12(20).

PMID: 37887273 PMC: 10604991. DOI: 10.3390/cells12202428.


Measuring Melanoma Nanomechanical Properties in Relation to Metastatic Ability and Anti-Cancer Drug Treatment Using Scanning Ion Conductance Microscopy.

Woodcock E, Gorelkin P, Goff P, Edwards C, Zhang Y, Korchev Y Cells. 2023; 12(19).

PMID: 37830615 PMC: 10571876. DOI: 10.3390/cells12192401.


Analytical Models for Measuring the Mechanical Properties of Yeast.

Savin N, Erofeev A, Gorelkin P Cells. 2023; 12(15).

PMID: 37566025 PMC: 10417110. DOI: 10.3390/cells12151946.


Erythro-Magneto-HA-Virosome: A Bio-Inspired Drug Delivery System for Active Targeting of Drugs in the Lungs.

Vizzoca A, Lucarini G, Tognoni E, Tognarelli S, Ricotti L, Gherardini L Int J Mol Sci. 2022; 23(17).

PMID: 36077300 PMC: 9455992. DOI: 10.3390/ijms23179893.


References
1.
Bremmell K, Evans A, Prestidge C . Deformation and nano-rheology of red blood cells: an AFM investigation. Colloids Surf B Biointerfaces. 2006; 50(1):43-8. DOI: 10.1016/j.colsurfb.2006.03.002. View

2.
Dimitriadis E, Horkay F, Maresca J, Kachar B, Chadwick R . Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J. 2002; 82(5):2798-810. PMC: 1302067. DOI: 10.1016/S0006-3495(02)75620-8. View

3.
Gorelik J, Zhang Y, Sanchez D, Shevchuk A, Frolenkov G, Lab M . Aldosterone acts via an ATP autocrine/paracrine system: the Edelman ATP hypothesis revisited. Proc Natl Acad Sci U S A. 2005; 102(42):15000-5. PMC: 1257717. DOI: 10.1073/pnas.0507008102. View

4.
Ali M, Schumacker P . Endothelial responses to mechanical stress: where is the mechanosensor?. Crit Care Med. 2002; 30(5 Suppl):S198-206. DOI: 10.1097/00003246-200205001-00005. View

5.
Mathur A, Collinsworth A, Reichert W, Kraus W, Truskey G . Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech. 2001; 34(12):1545-53. DOI: 10.1016/s0021-9290(01)00149-x. View